
Network Security:
Classic protocol flaws

Tuomas Aura

CS-E4300 Network security
Aalto University

Outline

▪ Needham-Schroeder secret-key protocol

▪ Denning-Sacco protocol

▪ Needham-Schroeder public-key protocol

▪ Wide-mouth-frog protocol

▪ Encrypt and sign

These protocol are old designs or early research ideas that

must not be used in practice. They are covered in security

courses because they illustrate specific security flaws.

Needham-Schroeder secret-key protocol
▪ The first secret-key key-exchange protocol 1978; basis for Kerberos
▪ Trusted third party T shares a secret master key with each user
▪ Alice asks T to create a session key SK for communication with Bob

3

KTA

KTBT

BA
KTA KTB

1. 2. SK, ticket(SK)

Authentication

3. ticket(SK)

5.
4.

Needham-Schroeder secret-key protocol

T creates a random session key SK and distributes it encrypted with A’s
and B’s the master keys KTA, KTB

1. A → T: A, B, NA1 // ticket request

2. T → A: ETA(NA1, B, SK, ticketAB) // ticket grant

3. A → B: ticketAB, E
SK

(NA2)

4. B → A: ESK(NA2-1, NB) // authentication and

5. A → B: ESK (NB-1) // key confirmation

ticketAB = E
TB

(SK, A) // encrypt and MAC

4

Needham-Schroeder secret-key details
▪ The protocol again:

1. A → T: A, B, NA1 “Hi, I’m A and would like to talk with B.”
2. T → A: ETA(NA1, B, SK, ticketAB)
3. A → B: ticketAB, ESK(NA2)
4. B → A: ESK(NA2-1, NB)
5. A → B: ESK(NB-1)

A, B = end entities (users or computers)
T = trusted server
KTA, KTB = A’s and B’s master keys shared with T
NA1, NA2, NB = A’s and B’s nonces

i.e. fresh random bit strings generated by A and B
NA1-1, NB-1 = nonces slightly modified
SK = session key selected by T (fresh random bit string)
ETA , ETA , ESK = symmetric encryption with a master key or session key
ticketAB = ETB(SK, A) “Here is a session key between you and A.”
EK(M) = EncryptK(M, MACK(M)) encryption and message authentication

▪ Goal: A and B agree on a session key and authenticate each other

5

1. A → T: A, B, NA1

2. T → A: ETA(NA1, B, SK, ticketAB) // ticketAB = ETB(SK,A)
3. A → B: ticketAB, E

SK
(NA2)

4. B → A: ESK (NA2-1, NB)
5. A → B: ESK (NB-1)

▪ T encrypts a session key under A’s and B’s master keys
▪ Master keys KTA and KTB must be strong secrets; weak passwords could can

be cracked by trying to decrypt message 2 and the ticket
▪ Messages 4–5 provide key confirmation

▪ NA1 guarantees freshness of ticket and session key to A
▪ NA2 and NB guarantee freshness of authenticators to A and B, respectively
▪ No freshness of the ticket to B…

6

Needham-Schroeder analysis

Needham-Schroeder vulnerability
▪ Vulnerability discovered by Denning and Sacco 1981

– B cannot check freshness of the ticket

▪ Assume attacker C has an old (sniffed) ticket, and that the old session key SK
leaks. C pretends to be A:

7

Lesson: protocol designers

should assume compromise

of old short-term secrets

3. ticketAB, ESK (NA)
A B

4. ESK (NA-1, NB)

C

5. ESK (NB-1)

3. ticketAB, ESK (NC)

4. ESK (NC-1, N’B)

5. ESK (NC-1)

Leaked SK How to fix?

How fixed in in Kerberos?

Denning-Sacco protocol

▪ Public-key key exchange 1981; flaw found in 1994

▪ A obtains certificates from trusted server T

1. A → T: A, B

2. T → A: CertA, CertB

3. A → B: EB(TA, SK, SA(TA, SK)), CertA, CertB

SK = session key selected by A

EB = encryption with B’s public key

CertA = A, PKA, ST (A, PKA)

8

A, PKA

B, PKB

B

T

A

1. 2.

3.

Denning-Sacco analysis
1. A → T: A, B
2. T → A: CertA, CertB

3. A → B: EB(TA, SK, SA(TA, SK)), CertA, CertB

SK = session key selected by A
EB = encryption with B’s public key
CertA = A, PKA, ST (A, PKA)

▪ Should use standard X.509 certificates with expiration time
▪ Public-key encryption for secrecy of SK → ok
▪ Time stamp for freshness of the session key → ok
▪ Public-key signature for authentication →

what information exactly is authenticated?

9

Denning-Sacco vulnerability
▪ The signed part is missing some information: not bound to B’s identity

– Does it matter? Yes, because B could be bad!

▪ Forwarding attack: B can re-encrypt and forward message 3 to others:
C will think it shares SK with A, but also Bob knows it

10

Lesson: protocols should

withstand insider attacks

where a legitimate user

impersonates another

Lesson: consider what is

not authenticated

How to fix?

Compare with audience attribute

in OpenID Connect identity token.

A, B

A B

CertA, CertB

T

EB(TA, SK, SA(TA, SK)),
CertA, CertB

C

EC(TA, SK, SA(TA, KAB)),
CertA, CertC

B, C
CertB, CertC

Re-encrypt

11

Needham-Schroeder public-key protocol

▪ The first public-key protocol 1978; flaw found in 1995 [Lowe95]

▪ A and B know each other’s public encryption keys (or certificates).
Then, A and B exchange encrypted nonces:

1. A → B: EB(NA, A)

2. B → A: EA(NA, NB)

3. A → B: EB(NB)

NA, NB = secret nonces, used both for freshness and as key material

EA, EB = encryption with A’s or B’s public key

SK = h(NA, NB)

BA
PKB

1.

3.
2.

PKA

12

Needham-Schroeder analysis

1. A → B: EB(NA, A)

2. B → A: EA(NA, NB)

3. A → B: EB(NB)

NA, NB = secret nonces, also serving as key material

EA, EB = encryption with A’s or B’s public key

SK = h(NA, NB)

▪ Session key secret and fresh → ok

▪ Entity authentication → ok with authenticated encryption

▪ Key material bound to A but not to B

Needham-Schroeder public-key vulnerability

▪ A authenticates to B. B can forward the authentication to C:

▪ C thinks it shares SK with A, but also B knows SK

▪ Insider attack: legitimate user B impersonates another user A

13

Another lesson: Consider two or more parallel protocol

executions and attacker forwarding messages between

them (interleaving attack)

EB(NA, A)
A C

EA(NA, NC)

EC(NA, A)
B

EB(NC) EC(NC)

EA(NA, NC)

Re-encrypt

Re-encrypt

How to fix?

14

Wide-mouth-frog protocol

▪ Toy protocol with interesting flaws

▪ A and B share secret master keys with trusted server T.
T distributes session keys:

1. A → T: A, ETA (TA , B, SK)

2. T → B: ETB (TT , A, SK)

ETA, ETB = encryption with
A’s and B’s master keys

TA, TT = time stamps

SK = session key selected by A

BA
KTA

1. 2.

KTB

KTA

KTB

T

15

Wide-mouth-frog analysis

1. A → T: A, ETA (TA , B, SK)

2. T → B: ETB (TT , A, SK)

ETA, ETB = symmetric encryption with A’s and B’s master keys

TA, TT = time stamps

SK = session key selected by A

▪ Encryption must protect integrity → implement with a MAC or
authenticated encryption

▪ Subtle issue with the time stamps and
message formats…

Wide-mouth-frog vulnerability

▪ Messages 1 and 2 can be confused with each other → replay attack

▪ Attacker can refresh timestamps and keep sessions alive for ever

16

Lesson: Use type tags in all
authenticated messages to avoid
accidental similarities

Lesson: Don’t allow unlimited
refreshing of credentials or
messages that should expire

How to fix?

A, ETA(TA, B, SK)
A B

ETB(TT, A, SK)

T

B, ETB(TT, A, SK)

ETA(TT2, B, SK)

A, ETA(TT2, B, SK)

ETB(TT3, A, SK)

B, ETB(TT3, A, SK)

ETA(TT4, B, SK)

C

17

Encrypt and sign

▪ A sends encrypted session key to B:

1. A → B: A, B, TA, EB (SK), SA(A, B, TA, EB (SK))

SK = session key selected by A

EB = encryption with B’s public key

SA = A’s public-key signature

TA = time stamp

BA
KB

1.

KA

18

Encrypt and sign vulnerability

▪ C sniffs message 1, replaces the signature, and forwards the key as her own
→ Session between A and B, but B thinks it is between C and B

A, B, TA, EB (SK),
SA(A, B, TA, EB (SK))

A B

C, B, TC, EB (SK),
SC(C, B, TC, EB (SK))

C

ESK (session data)

Lesson: In misbinding attacks, attacker causes confusion about

who is communicating without learning any keys or secrets herself

How to fix?

