
Network Security:
TLS 1.3 PSK and session resumption

Tuomas Aura, Aalto University

CS-E4300 Network security

2

Outline

▪ Recall TLS 1.3 full handshake

▪ Pre-shared key (PSK) mode

▪ Session resumption

Client Server

ClientHello

+ key_share*

+ signature_algorithms*

+ supported_groups*

+ server_name*

+ certificate_authorities* -------------> ServerHello

<-------------

+ key_share*

{EncryptedExtensions}

{CertificateRequest*}

{Certificate*}

{CertificateVerify*}

{Finished}

[ApplicationData*]

{Certificate*}

{CertificateVerify*}

{Finished} ------------->

[Application data] <------------> [Application data]

3

TLS 1.3 full handshake

2. DHE or ECDHE
key exchange

3. Server
authentication4. Client

authentication
(typically omitted)

5. Key
confirmation

1. Parameter
negotiation

6. Protected session data

{encrypted}
[encrypted]
+ extension
* Optional

Client Server

ClientHello

+ key_share*

+ pre_shared_key

(Application Data*) ------------->

<-------------

ServerHello

+ pre_shared_key

+ key_share*

{EncryptedExtensions}

{Finished}

[ApplicationData*]

(EndOfEarlyData)

{Finished} ------------->

[Application data] <------------- [Application data]

Pre-shared key (PSK) mode

4

Client identities

Selected client identity

Recommended:
DHE or ECDHE for PFS

Authentication
based on PSK

Pre-shared key (PSK) mode

1. C → S: NC , gx, ClientIdentity

2. S → C: NS , gy, HMACKfks(TH),
early data

3. C → S: HMACKfkc(TH)

▪ Mutual authentication based on a pre-established identity and
session key (external PSK)

– PSK = pre-established shared key between C and S

– HMAC keys Kfks and Kfkc in for the Finished message are derived
from PSK, gxy and TH; and so are the session keys

5

Client Server

ClientHello

+ key_share*

+ signature_algorithms*

+ supported_groups*

+ server_name*

+ certificate_authorities* -------------> ServerHello

<-------------

+ key_share*

{EncryptedExtensions}

{CertificateRequest*}

{Certificate*}

{CertificateVerify*}

{Finished}

[ApplicationData*]

{Certificate*}

{CertificateVerify*}

{Finished} ------------->

<------------- NewSessionTicket

[Application data] <------------> [Application data]

TLS 1.3 session resumption (1)

6

Server packages the session state into an
encrypted data blob called session ticket and

sends it to the client

Client Server

ClientHello

+ key_share*

+ pre_shared_key

(Application Data*) ------------->

<-------------

ServerHello

+ pre_shared_key

+ key_share*

{EncryptedExtensions}

{Finished}

[ApplicationData*]

(EndOfEarlyData)

{Finished} ------------->

[Application data] <------------- [Application data]

TLS 1.3 session resumption (2)

7

Client identities =
one or more session tickets

Selected session ticket

Recommended:
DHE or ECDHE for PFS

TLS 1.3 session resumption timeline

8

Server resumes session
state and resumption PSK
from the ticket

Client Server

Full handshake

NewSessionTicket(ticket)

PSK mode

Client stores ticket,
knows resumption PSK

Server can be stateless

pre_shared_key(ticket)

Server packages session state
and resumption PSK
into a ticket

Ticket = opaque data blob that
helps the server recall the session.
Typically contains encrypted
session state and resumption PSK.
Only the server itself can decrypt
the tickets that has created

TLS 1.3 session resumption uses

▪ TLS 1.3 session resumption = PSK mode handshake
with ticket as client identity and resumption key as the PSK

– Currently the main purpose of the PSK mode

▪ When useful?

– Server does not want to store the TLS sessions over idle periods

– If client is authenticated with smartcard, avoids repeated user action

– Mobile clients keep changing their IP address and need frequent
reconnection

– Resume the session with a different server instance in the cloud

9

10

Key derivation
Inputs to key derivation:

1. PSK (external PSK or resumption PSK)
2. DHE/ECDHE secret

3. Transcript of handshake messages, up to the point where the key is derived

Keys:
▪ client_early_traffic_secret→ used to derive AEAD keys for early data in 0-RTT (…)

▪ client/server_handshake_traffic_secret→ used to derive AEAD keys for handshake
messages {…} and Finished HMAC keys

▪ client/server_application_traffic_secret_N→ used to derive AEAD encryption keys for
post-handshake application data and messages […]

▪ resumption_master_secret and ticket_nonce→ derive resumption PSK
▪ exporter_master_secret→ used to create keys for the application layer

one or both, as available

Client Server

ClientHello

+ key_share*

+ pre_shared_key

(Application Data*) ------------->

<-------------

ServerHello

+ pre_shared_key

+ key_share*

{EncryptedExtensions}

{Finished}

[ApplicationData*]

(EndOfEarlyData)

{Finished} ------------->

<------------- NewSessionTicket

[Application data] <------------- [Application data]

TLS 1.3 session resumption and identity

11

Server can refresh the ticket for PFS
and for protecting client identity

Identity protection?

▪ Session tickets are encrypted

▪ Session ticket can become a pseudo-identifier
→ Server should regularly refresh ticket

12

“Selfie attack”
▪ Reflection attack against

external (out-of-band) PSK
– Trick the client to connect to

itself
– Assumes the same entity can

be both client and server

▪ PSK used mistakenly as a group
key for two parties
– Group key only authenticates

the group, not the individual

▪ Solution: Use different PSK for
each direction
– For each PSK, Alice is either the

client or server, never both for
the same PSK

13

[Nir Drucker & Shay Gueron, Selfie: reflections on TLS 1.3 with PSK, 2019]

