

Network Security: IKEv2 discussion

Tuomas Aura CS-E4300 Network security Aalto University

Internet Key Exchange (IKEv2)

1. I → R: SPI_i, SPI_r, SA_{i1}, g^x, N_i 2. R → I: SPI_i, SPI_r, SA_{r1}, g^y, N_r, CERTREQ_r 3. I → R: SPI_i, SPI_r, E_{SK}(ID_i, CERT_i, CERTREQ_i, ID_r, Sign_i (Message1, N_r, MAC_{SK}(ID_i)), SA_{i2}, TS_i, TS_r, MAC_{SK}(...)) 4. R → I: SPI_i, SPI_r, E_{SK}(ID_r, CERT_r, Sign_R ((Message2, N_i, MAC_{SK}(ID_r)), SA_{r2}, TS_i, TS_r, MAC_{SK}(...))

 $SPI_x = two values that together identify the protocol rt$ $<math>SA_{x1} = offered and chosen algorithms, DH and ECDH gr$ $<math>SK = h(Ni, Nr, g^{xy}) - actually, 7 different keys are deriv$ $<math>ID_x, CERT_x, CERTREQ_x = identity, certificate, accepted ro$ $<math>SA_{x2}, TS_x = parameters for the first IPsec SA (algorithm)$ $<math>E_{SK}(..., MAC_{SK}(...)) = HMAC and encryption, or authentic$

Which security properties?

- Secret, fresh session key
- Mutual or one-way authentication
- Entity authentication, key confirmation
- Perfect forward secrecy (PFS)
- Contributory key exchange
- Downgrading protection
- Identity protection
- Non-repudiation
- Plausible deniability
- DoS resistance

Privacy properties

Identity protection

- All identifiers and certificates are encrypted with the DH secret
- Initiator reveals its identity first \rightarrow vulnerable to active attacks
- Responder authenticates initiator before revealing its identity → Responder identity protected also against impersonation attacks.
- Why protect the responder better? Because the attacker can initiate IKEv2 key exchange with any target IP address. The target then becomes the responder
- Special case: In mutual authentication with EAP, identity protection against active attackers depends on the EAP method
- Plausible deniability
 - Neither endpoint signs anything that would bind it to the other endpoint's identity

IKEv2 with a cookie exchange

- Responder may send a cookie (a random number) to the initiator
- Goal: verify initiator IP address; prevent DoS attacks from a spoofed IP address

1.	$I \rightarrow R$:	HDR(A,0), SAi1, KEi, Ni	
2.	$R \rightarrow I$:	HDR(A,0), N(COOKIE)	<pre>// R stores no state</pre>
3.	$I \rightarrow R$:	HDR(A,0), <mark>N(COOKIE)</mark> , SAi1, KEi, Ni	
4.	$R \rightarrow I$:	HDR(A,B), SAr1, KEr, Nr, [CERTREQ]	<pre>// R creates a state</pre>
5.	$I \rightarrow R$:	HDR(A,B), SK{ IDi, [CERT,] [CERTREQ,] [IDr,] AUTH, SAi2, TSi, TSr	
6.	$R \rightarrow I$:	HDR(A,B), E _{SK} (IDr, [CERT,] AUTH, SAr2, TSi, TSr)	

How to bake a good cookie? Example:

```
\frac{\text{COOKIE} = h(K_{R-periodic}, ipaddr_{I}, ipaddr_{R})}{\text{where } K_{R-periodic}} is a periodically changing secret key know only by the responder R
```

Negotiated parameters

- NAT traversal:
 - NAT detection IKE_SA_INIT exchange
 - If NAT detected, IKEv2 and IPsec are encapsulated in UDP with port 4500
- Parameters for the key exchange:
 - Protocol version and authentication method (signatures, PSK, or EAP)
 - A, B = each endpoint chooses a locally unique SPI for the IKE SA
 - SAi1, SAr1 = cryptographic algorithms for the key exchange and IKE SA (responder chooses from initiator's offer)
 - CERTREQ = sender's supported trust anchors (CAs)
 - IDr = responder identity which the initiator wants to authenticate
- Parameters for the IPsec SA pair:
 - SAi2, SAr2 = cryptographic algorithms for protecting session data SA (responder chooses from initiator's offer)
 - TSi, TSr = traffic selectors i.e. which packets to protected (responder can choose a subset of the offer)

Many options add complexity and reduce inter-operability

IKE versions

- IKE(v1) [RFC 2407, 2408, 2409]
 - Framework for authenticated key-exchange protocols, typically DH
 - Multiple authentication methods: certificates, pre-shared key, Kerberos
 - Two phases: Main Mode (MM) or Aggressive Mode creates an ISAKMP SA (i.e., IKE SA) and Quick Mode (QM) creates IPsec SAs
 - Interoperability issues, complex to implement and test, incomplete spec
 - Still used, but no reason to use for anything new
- IKEv2 [RFC 7296]
 - Redesign of IKE: fewer modes and messages, simpler to implement
 - Interoperability still requires careful configuration of the endpoints