
Network Security:
Firewall: stateful filtering

Tuomas Aura

CS-E4300 Network security
Aalto University

2

Stateful packet filter example: TCP

Stateful filter that passes only outbound connections:

Input
interface

Protocol Src IP Src port Dst IP Dst port Flags Other Action Comment

lan TCP 1.2.3.0/24 * * 80 Pass, create state Outbound HTTP
requests

wan TCP * 80 1.2.3.0/24 * state Pass Inbound HTTP
responses

* * * * * * Drop Default rule

• Good firewalls only create a small pinhole: the state is stored in a

connection table that remembers the protocol, local IP address, local port,

remote IP address, remote port

• Some firewalls might only remember the rule (pair) that was matched, but

that is less secure (why?)

3

Dynamic firewall
▪ Stateful packet inspection (SPI) detects packets that start new

connections or belong to an old one

▪ Outbound TCP or UDP packet creates a pinhole for inbound packets
of the same connection
– TCP pinhole is closed when connection closes or after timeout; UDP after

timeout, e.g., 30 min

▪ Firewalls may support stateless filtering of additional protocols:
– ICMP errors that match previous outbound packets
– FTP and X Windows open TCP connections in reverse direction

▪ Stateful filtering may significantly lower firewall/router throughput
and increase latency if the processing is done in software

4

Network topology with DMZ
▪ Services accessible from the Internet are isolated to a demilitarized zone

(DMZ), i.e., in a separate subnetwork
▪ The DMZ is typically a virtual LAN (VLAN) instead of a physical network

44

Note: This topology is
becoming less common
as the servers move to
the cloud

Note: This topology is
becoming less common
as the servers move to
the cloud

Public server:
web, email, DNS

Interface
lan1

1.2.4.1

1.2.4.10

Intranet
1.2.3.0/24

Interface
lan0

1.2.3.1

InternetInternet

Interface
wan

5.6.7.8

DMZ
1.2.4.0/24

5

Input if Protocol Src IP Port Dst IP Port Other Action Comment

wan, lan1 * 1.2.3.0/24 * * * Drop Anti-spoofing (LAN)

wan, lan0 * 1.2.4.0/24 * * * Drop Anti-spoofing (DMZ)

* * {1.2.3.1, 1.2.4.1,
5.6.7.8} * * * Drop Anti-spoofing (router addresses)

wan, lan0 UDP * * 1.2.4.10 53 Pass, create state DNS query to local server

lan1 UDP 1.2.4.10 53 * * State Pass DNS response from local server

lan1 UDP 1.2.4.10 * * 53 Pass, create state DNS query to ISP

wan UDP * 53 1.2.4.10 State Pass DNS response from ISP

wan TCP * * 1.2.4.10 22,25,80,443 Pass Server access from Internet

lan0 TCP 1.2.3.0/24 * 1.2.4.10 22,25,80,443 Pass, create state Server access from intranet

lan1 TCP 1.2.4.10 22,25,80,443 1.2.3.0/24 * State Pass Responses

lan0 * 1.2.3.0/24 * 1.2.4.0/24 * Drop Unnecessary LAN-DMZ traffic

lan1 * 1.2.4.0/24 * 1.2.3.0/24 * Drop Unnecessary LAN-DMZ traffic

lan0 * 1.2.3.0/24 * * * Pass, create state Outbound to Internet

wan * * * * * State Pass Responses from Internet

lan0 TCP 1.2.3.0/24 * 1.2.3.1 22 Pass, create state Router management

local TCP 1.2.3.1 22 1.2.3.0/24 * State Pass Router management

* * * * * * Drop Default rule

Is this correct? What happens if the rules are in wrong order What kind of state is stored in each case?

NAT
▪ Network address translation (NAT) is a mechanisms for sharing one IPv4 address between

multiple hosts
▪ Hosts in intranet use a private address space

– 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16
– 100.64.0.0/10 for carrier-grade NAT (e.g., ISPs and mobile operators)

▪ Hosts behind NAT can only act as TCP or UDP clients, not as servers
▪ Intranet

192.168.33.0/24

6

Interface
lan

192.168.1.1 InternetInternet

Interface
wan
5.6.7.8

NAT

Intranet
192.168.1.0/24

Gateway
router /

NAT

NAT

7

192.168.1.103

192.168.1.101

192.168.1.102

5.6.7.8

Private IP addresses Internet addresses

src=192.168.1.101
src port = 3344
...

src=5.6.7.8
src port = 4567
...

192.168.1.1

Prot Internal addr Port External addr Port

TCP 192.168.1.101 3344 5.6.7.8 4567

TCP … … 5.6.7.8 …

Public IP
address

Internet

NAT

8

Gateway
router /

NAT

Internet

192.168.1.103

192.168.1.101

192.168.1.102

Private IP addresses Internet addresses

192.168.1.1

dst=192.168.1.101
dst port = 3344
...

dst=5.6.7.8
dst port = 4567
...

Public IP
address

Prot Internal addr Port External addr Port

TCP 192.168.1.101 3344 5.6.7.8 4567

TCP … … 5.6.7.8 …

5.6.7.8

9

NAT as a firewall

▪ NAT maps internal <private IP addr, port> pairs to external <public
IP addr, port> pairs and back
– NAT creates the mapping based on an outbound packet

→ a node on the intranet must initiate each connection
→ NAT acts as a dynamic firewall

▪ NAT may remember additional connection parameters:
– Remote IP address and port, TCP protocol state

– The more connection parameters it remembers and filters, the more like a
stateful firewall it becomes

▪ The previous example is a full cone NAT: does not even remember
remote address or port → worst for security, best for NAT traversal

10

Implementation terminology

▪ Endpoints:

– Source – destination,

– Local – remote

– Inbound – outbound

▪ Direction of connection:

– Existing connections = state exists

– Mirror rule = pass packets also in the other direction

11

Port forwarding and UPnP

▪ Port forwarding: firewall administrator creates a permanent
NAT table entry or firewall hole

– Inbound connections to the firewall are routed to a specific host and
port in the intranet

– Internet client can connect to a servers behind the NAT or firewall,
e.g., Minecraft server or personal media server

▪ Universal plug and play (UPnP):

– Discovery protocol with which intranet hosts can request the firewall
to set up port forwarding

– Security-aware people generally disable UPnP in their router

12

iptables

▪ Firewall implementation for Unix/Linux

▪ Complex policies can be defined as multiple chains of rules:

– Action can be a reference to another chain

– Provides modularity (“subroutines”) for firewall policies

▪ Lots of good examples:
– http://fwbuilder.sourceforge.net/4.0/docs/users_guide5/cookbook.shtml

(browse the subsections for iptables, PF and PIX examples)

http://fwbuilder.sourceforge.net/4.0/docs/users_guide5/cookbook.shtml

FILTERING BETWEEN NETWORK SEGMENTS

13

Filtering between VLANs

▪ f

14

Input if Prot Src IP Src
port

Dst IP Dst
por

t

Flags Action Comment

lan.11 TCP 10.64.0.0/16 * not 10.0.0.0/8 * Pass Outbound from server VLAN11

lan.12 TCP 10.65.0.0/16 * not 10.0.0.0/8 * Pass Outbound from workstation VLAN12

lan.13 TCP 10.66.0.0/16 * not 10.0.0.0/8 * Pass Outbound from guest VLAN13

wan TCP * * 10.64.0.0/10 * ACK Pass Inbound from WAN to VLANs

lan.11 TCP 10.65.0.0/16 * 10.64.0.0/16 * Pass Workstations to servers

lan.12 TCP 10.64.0.0/16 * 10.65.0.0/16 * ACK Servers to workstations

* * * * * * Drop Default rule

VLAN11
10.64.0.1/16

Interface lan.11
10.64.0.1

InternetInternet

Interface
wan

5.6.7.8Interface lan.12
10.65.0.1

Interface lan.13
10.66.0.1

VLAN12
10.65.0.1/16

VLAN13
10.66.0.1/16

Untagged intranet
10.1.0.1/16

Interface lan
10.1.0.1

Servers

Workstations

Guest

Zone-based filtering
▪ What we often want is to limit access between network zones, i.e., LANs or

VLANs. Something like this:

▪ How to implement zone-based firewall rules? Two solutions:
– Each zone has a different IP subnet. Filter inbound packets at each source interface

based on their destination IP address. Define separate rules for IPv4 and IPv6.
– Mark packet at input interface, filter based on the mark at the output interface. (Works

even after network renumbering, e.g., by IPv6 prefix delegation.)

▪ Still need stateless or stateful implementation of connection direction

Client if Server if Action Comment

lan.11 wan Pass Outbound connections from servers VLAN11

lan.12 wan Pass Outbound connections from workstations VLAN12

lan.13 wan Pass Outbound connections from guest VLAN13

lan.12 lan.11 Pass Connections from workstations to servers

* * Drop Default rule

