Bluetooth Security

Mohit Sethi Ericsson, Finland Aalto University, Finland

Bluetooth Security - Outline

- Part 1:
 - Bluetooth standard evolution
 - Bluetooth stack and protocols
- Part 2:
 - Pairing and Bonding
 - Privacy with Private addresses
- Part 3:
 - Mesh and secure joining

Bluetooth

- Developed by Ericsson in 1994
 - Named after Danish king Harald Blåtand Gormsen
- Standard specified by the Bluetooth SIG (Special Interest Group) together with Nokia, IBM, Intel, Toshiba etc.
- Major releases
 - Bluetooth 2.0 2004
 - Bluetooth 4.0 2010
 - Bluetooth 5.0 2016
 - Bluetooth Mesh profile 2017

Bluetooth Standard Evolution

- Bluetooth 2.0 and 2.1 :
 - Lower power consumption and faster data transfer (≈ 3Mbit/s)
 - Secure Simple Pairing made pairing simpler and more secure
- Bluetooth 4.0 and 4.2:
 - Bluetooth Low Energy (BLE) aka Bluetooth Smart
 - Health and fitness trackers with longer battery life
 - IPv6 and improved Internet connectivity
 - Beacons and advertisements
 - Privacy enhancements with better protection against device tracking
- Bluetooth 5.0 2016
 - Faster and longer range (≈ 240 meters)
- Bluetooth Mesh profile 2017
 - Mesh networking with 100s of devices
 - Can work with devices that support Bluetooth 4.2 and higher
 - Original Bluetooth from early 2000s defines piconets (1 master + 7 active slave devices). Most deployments were device-to-device!

Bluetooth has two wireless technology systems:

- Basic Rate (BR) : includes optional enhanced data rate (EDR) and Alternate Media Access Control (AMP) extensions
- Low Energy (LE): low power, low cost, low data rates

– Bluetooth has two wireless technology systems:

- Basic Rate (BR) : includes optional enhanced data rate (EDR) and Alternate Media Access Control (AMP) extensions
- Low Energy (LE): low power, low cost, low data rates

– Bluetooth has two wireless technology systems:

- Basic Rate (BR) : includes optional enhanced data rate (EDR) and Alternate Media Access Control (AMP) extensions
- Low Energy (LE): low power, low cost, low data rates

– Bluetooth has two wireless technology systems:

- Basic Rate (BR) : includes optional enhanced data rate (EDR) and Alternate Media Access Control (AMP) extensions
- Low Energy (LE): low power, low cost, low data rates

LE protocol stack

Bluetooth – GAP

- Generic Access Profile:
 - Base profile implemented by all Bluetooth devices
 - Defines device discovery, connection establishment, association models, security
- Roles:
 - Single role in BR/EDR all devices can initiate or accept connections
 - Four roles in LE :
 - Broadcaster: Broadcast device advertises but does not accept connections
 - Observer: Observer listens to advertisements but does not initiate connection
 - Peripheral: Device advertises and accepts a single connection
 - Central: Initiator for all connections and can open multiple connections
 - Simultaneous multiple roles

Bluetooth – GAP

- GAP defines various modes a device can be in:
 - Discoverability modes
 - Non-discoverable/Discoverable/Limited discoverable/General discoverable
 - Connectability modes
 - Non-connectable
 - Bonding modes
 - Non-bondable/Bondable
 - Synchronizable modes
 - Non-synchronizable/Synchronizable
 - Periodic Advertising mode

Bluetooth – Advertising

- Advertisements sent by broadcaster or peripheral
- 3 primary channels for advertisements chosen to avoid overlap with WiFi
- Advertisements can be: directed/undirected/connectable/nonconnectable/scannable/non-scanable
- 31 bytes of data that includes:
 - Device name
 - Service UUID (Universally Unique Identifier)
- 2 popular standards that build on Bluetooth Advertising
 - Apple iBeacon
 - Google Eddystone
- Used for indoor positioning, asset tracking etc.

Bluetooth – Connections

- Advertisements are unidirectional
- Connections enable bidirectional data transfer
- Several phases before connection establishment:
 - Inquiry and name discovery
 - Link establishment
- In LE: Peripheral -> Slave and Central -> Master
- In BR/EDR: initiating device is master and responding device is slave
 - Role switching is possible: initiating device wants to joining an existing piconet
- Connection request -> data exchange -> connection established
- If no existing link key for authentication and encryption, then pairing is necessary.

Bluetooth – GATT

- Generic Attribute (GATT) Profile
 - How is data formatted and exchanged between a client and server
 - Builds on ATT (Attribute Protocol)

Bluetooth – GATT

- Attribute (ATT) protocol:
 - Defines how a server exposes data and clients read/query/commands
 - Data is structured as attributes
 - Client/server role independent of master/slave
 - Devices can be in both client and server role

Bluetooth – GATT

- A service is composed of attributes
 - Characteristic attributes: contain a value that can be read by the client.
 - Can include optional descriptor attributes that help define value it holds (format/unit)
- A profile is composed of services and defines client/server behavior
- Generic Attribute (GATT) profile:
 - defines how to use ATT for discovery, reading, writing, and obtaining indications
 - reference framework for other GATT-based profiles: SIG defined or custom

Bluetooth Security - Outline

- Part 1:
 - Bluetooth standard evolution
 - Bluetooth stack and protocols
- Part 2:
 - Pairing and Bonding
 - Privacy with Private addresses
- Part 3:
 - Mesh and secure joining

Bluetooth – Pairing

- Pairing in BR/EDR vs. BLE:
 - Security Manager: defines protocols for managing pairing, authentication, and encryption

LE protocol stack

Bluetooth – Pairing

- Many versions and names
 - BR/EDR:
 - Version 2.1 Secure Simple Pairing
 - Version 4.2 Secure connections
 - LE:
 - Version 4.0/4.1 called LE legacy pairing (based on SSP with modifications)
 - Version 4.2 Secure connections
 - Most devices support old versions for interoperability => Susceptible to attacks

Bluetooth – Pairing

- Exchange I/O capabilities decides association model:
 - Just works protection only from passive attacker
 - Numeric Comparison short 6-digit confirmation values show
 - Out-of-band message sent over NFC for example
 - Passkey entry user enters passkey into two devices being paired
- Phases:
 - Exchange of ECDH public keys
 - Authentication stage 1 and 2
 - Link-key calculation

Bluetooth – Pairing with Numeric Comparison

Bluetooth – Pairing with OOB

Bluetooth – Bonding and LMP authentication

- Pairing results in generation of link-key
- Bonding stores a LTK after pairing for establishing future connections without pairing
 - Bonding in LE also distributes Identity Resolving Key (IRK) and Connection Signature Resolving Key (CSRK)
- LMP authentication mutual authentication to confirm that both have same link key
 - Secure authentication: exchange random numbers, compute hash with link-key and random numbers, send SRES (expected response). If SRES match with locally computed values, link-key authenticated and fresh keys generated

Bluetooth LE - Privacy

- 4 types of address in LE
 - Public address: Fixed, global (registration with IEEE), never changes
 - Random addresses:
 - Static address: Can change at bootup but static during runtime
 - Resolvable private address: Optional. Changes periodically (≈ 15 min): generated using IRK and a random number. Can be resolved by other devices which have bonded earlier
 - Non-resolvable private address: Optional. Also changes periodically. No one else can resolve such addresses. Used for privacy in beacons or Covid-19 tracing

Bluetooth LE - Privacy

- Resolvable private address:
 - Generation: hash = ah(IRK, prand) concatenated with prand

 Resolution: Receiver uses the prand with all IRKs in its database to lookup the peer device

Bluetooth Security - Outline

- Part 1:
 - Bluetooth standard evolution
 - Bluetooth stack and protocols
- Part 2:
 - Pairing and Bonding
 - Privacy with Private addresses
- Part 3:
 - Mesh and secure joining

- Added in 2017 to support many-to-many topology
 - Builds on top LE and is a profile
 - Utilize advertising: no connections are setup
 - Low-power battery-operated nodes can be supported with Proxy

- State: value representing the condition of an element
- Properties: add context to state
- Messages sent in a mesh network with managed flooding
 - Unacknowledged : sent when no response required
 - Acknowledged : message is acknowledged with a response (containing data)
 - get: get state of a peer element
 - set: set state of a peer element
 - status: sent in response to a get/acknowledged set or time intervals

- Address: messages sent in a mesh must have source and destination
 - Unicast address: message sent to a particular node
 - Group address: identifies a group of nodes (SIG fixed or dynamically).
 Several group addresses within a mesh network
 - Virtual address: multicast address for multiple elements on one or more nodes
- Bluetooth mesh uses publish/subscribe paradigm

- Model: defines functionality. Applications are defined with models instead of profiles:
 - Server model: states, state transitions, messages which element can send or receive
 - Client model: defines messages such as get/set/status sent to server
 - Control model: contain client and server model and defines interactions with other devices containing client/server models
- Scene: collection of states. One action to set multiple states of different nodes

- Nodes can support optional functionality:
 - Relay: able to forward messages that are broadcast. Necessary for messages to traverse the network. Time to live (TTL) controls relaying behavior.

- Nodes can support optional functionality:
 - Proxy: exposes a proxy service with GATT. Allows non-mesh device to interact with the mesh network

- Nodes can support optional functionality:
 - Low-power: resource-constrained. Sleep most of the time and send data on wakeup. Polls friend nodes on wakeup
 - Friend: not resource-constrained. Caches messages for low-power nodes

- Provisioning: adding a new device to the mesh network
- Provisioner: smartphone for provisioning new devices
 - Beaconing: unprovisioned device sends advertisements to indicate that it is waiting to be provisioned

Unprovisioned device

Provisioner

- Provisioning: adding a new device to the mesh network
- Provisioner: smartphone for provisioning new devices
 - Invitation: provisioner discovers new device via beacon and sends an invitation. New device responds with provisioning capabilities (including elements, security algorithms, I/O capability etc.)

- Provisioning: adding a new device to the mesh network
- Provisioner: smartphone for provisioning new devices
 - Public key exchange: ECDH key exchange with fresh keys (or static for device, i.e. printed on a sticker)

- Provisioning: adding a new device to the mesh network
- Provisioner: smartphone for provisioning new devices
 - Authentication: Device or Provisioner generate and show a random number (as blinking LED, audio etc.) that is input on the other side.
 Both send commitments with random number and reveal random numbers after. Generate session key.

- Provisioning: adding a new device to the mesh network
- Provisioner: smartphone for provisioning new devices
 - Distribution of provisioning data : Provisioner sends data: network key, IV index, unicast address assigned etc.

Bluetooth Mesh - Security

- Key Separation:
 - Application Key: shared by a subset of nodes in the mesh network, e.g., light bulbs and switches
 - Device Key: shared between device and provisioner for sending network information
 - Network Key: shared by all nodes in the mesh network. Used for deriving network encryption key and privacy key
- Privacy key derived from network key
- Network header including source address obfuscated with this key