
Network Security:
Formal Verification

Aleksi Peltonen
CS-E4300 Network security

Aalto University

Design
Protocol

Release
Standard

Verify

Implement &
Deploy

e.g.
IETF
3GPP

2

Formal Verification in Protocol Development

Protocol Modeling

3

Protocol

 EAP Peer EAP Server
 | ...continuing from common handshake |
 | |
 |<----------- EAP-Request/EAP-NOOB ----------------|
 | (Type=2,Vers,PeerId,[NewNAI], |
 | Cryptosuites,Dirs,ServerInfo) |
 | |
 | |
 |------------ EAP-Response/EAP-NOOB -------------->|
 | (Type=2,Verp,PeerId,Cryptosuitep, |
 | Dirp,PeerInfo) |
 | |
 | |
 |<----------- EAP-Request/EAP-NOOB ----------------|
 | (Type=3,PeerId,PKs,Ns,[SleepTime]) |
 | |
 | |
 |------------ EAP-Response/EAP-NOOB -------------->|
 | (Type=3,PeerId,PKp,Np) |
 | |
 | |
 |<----------- EAP-Failure -------------------------|
 | |

(* EAP-Response/Identity *)
in(c, (=NAI));
(* EAP-Request/EAP-NOOB (type 1) *)
out(c, (t1));
(* EAP-Response/EAP-NOOB (type 1) *)
in(c, (=t1,=s0));

(* Generate values *)
new Vers:Ver_l; new PeerId:PeerId_t; new ServerInfo:Info_t;
new Cryptosuites:Cryptosuite_l; new Dirs:Dir_t;

(* EAP-Request/EAP-NOOB (type 2) *)
out(c, (t2,Vers,PeerId,Cryptosuites,Dirs,ServerInfo));
(* EAP-Response/EAP-NOOB (type 2) *)
in(c, (=t2,Verp:Ver_t,=PeerId,Cryptosuitep:Cryptosuite_t,
 Dirp:Dir_t, PeerInfo:Info_t));

(* Generate nonce *)
new Ns:N_t;
(* Server public key *)
let PKs = pk(SKs) in

(* EAP-Request/EAP-NOOB (type 3) *)
out(c, (t3,PeerId,PKs,Ns));
(* EAP-Response/EAP-NOOB (type 3) *)
in(c, (=t3,=PeerId,PKp:K_t,Np:N_t));

(* EAP-Failure *)
out(c, EAP_Failure);

Model

Protocol Modeling

4

Dolev-Yao Attacker

5

● Attacker can read, modify, delete, and inject messages.
● Attacker can not decrypt messages without encryption keys.

6

Use-cases

● Formal verification is useful for..
○ ..finding attacks in large protocols.
○ ..spotting mistakes in your design.
○ ..finding variations of attack traces.

● Formal verification does not..
○ ..prove correctness of the protocol.
○ ..find implementation issues.

7

Case study:
Misbinding in device

pairing with Bluetooth

Sethi M, Peltonen A, Aura T. Misbinding attacks on secure device pairing and bootstrapping.
In: Proceedings of the 2019 ACM Asia conference on computer and communications security,
Asia CCS ’19. ACM, New York; 2019. p. 453–464. https://doi.org/10.1145/3321705.3329813.

Bluetooth numeric comparison

1. Make device B discoverable

2. On device A, search and select B

3. Key exchange in background

4. Compare 6-digit codes and press OK → Paired!

8A B

Bluetooth numeric comparison

1. Make device B discoverable

2. On device A, search and select B

3. Key exchange in background

4. Compare 6-digit codes and press OK → Paired!

9A B

KEX

Bluetooth numeric comparison

1. Make device B discoverable

2. On device A, search and select B

3. Key exchange in background

4. Compare 6-digit codes and press OK → Paired!

914030 914030

10A B

OKOK OKOK
KEX

Bluetooth numeric comparison

1. Make device B discoverable

2. On device A, search and select B

3. Key exchange in background

4. Compare 6-digit codes and press OK → Paired!

PAIRED PAIRED

11A B

PAIRED

12

PKa

Initiating Device

A

PKb Phase 1: ECDH Key Exchange

Non-Initiating Device

B

Cb = f1(PKbx,PKax,Nb,0)

Na

Phase 2: Authentication Stage 1Nb

Va = g(PKax,PKbx,Na,Nb) Vb = g(PKax,PKbx,Na,Nb)

User checks if Va = Vb and
confirms on each end

Abort if Cb is not correct

Proceed if user
confirms ok

Proceed if user
 confirms ok

Ea = f3(DHKey,Na,Nb,0,
 IOcapA,A,B)

Eb = f3(DHKey,Na,Nb,0,
 IOcapB,B,A)

Eb

Ea

Abort if Ea is not correct

Abort if Eb is not correct Phase 3: Authentication Stage 2

Both sides compute link key
f2(DHkey,N

master
,N

slave
,”btlk”,

ADDR_MASTER, ADDR_SLAVE)
Phase 4: Link key calculation

LMP protocol Phase 5: Authentication and Encryption

13

Demo:
Discovering the misbiding

attack with ProVerif

ProVerif

14

● ProVerif is a tool for modeling and automatic verification of cryptographic protocols and
their security goals.

● It can be used for proving secrecy and authentication properties.
● ProVerif analyzes the protocol over an unbounded number of sessions and messages. It

tries to construct an attack trace when the target property fails.
○ Results are either true, false, or undecided.

● Models are written in the typed pi calculus and can be divided into three parts:

1. Declarations formalize the behavior of cryptographic primitives.

2. Process macros allow sub-processes to be defined, in order to ease development.

3. A main process, which using macros encode the protocol itself.

Misbinding in Bluetooth

15A B

Adversary has
limited control of B
(Malicious app)

Misbinding in Bluetooth

16A B

Adversary has
limited control of B
(Malicious app)

“B”

Attacker has
another device
named “B”

Misbinding in Bluetooth

17A B

Adversary has
limited control of B
(Malicious app)

“B”

Attacker has
another device
named “B”

KEX

Key exchange
between wrong

devices

1

Misbinding in Bluetooth

914030 914030

18A B

Adversary has
limited control of B
(Malicious app)

914030

“B”

Attacker has
another device
named “B”

KEX

Key exchange
between wrong

devices

OKOK

OKOK

OKOK

Attacker relays
6-digit code

Malicious app
spoofs UI

1 2

3

Misbinding in Bluetooth

914030 914030

19A B

Adversary has
limited control of B
(Malicious app)

914030

“B”

Attacker has
another device
named “B”

KEX

Key exchange
between wrong

devices

OKOK

OKOK

OKOK

Attacker relays
6-digit code

Malicious app
spoofs UI

Attacker clicks OK

User clicks OK

1 2

4

4

3

Misbinding in Bluetooth

PAIRED PAIRED

20A B

Adversary has
limited control of B
(Malicious app)

PAIRED

“B”

Attacker has
another device
named “B”

PA
IR

ED

21

• Why does Bluetooth
not detect misbinding?

• Could it?

• Devices have no verifiable
identifiers!

• Authentication based only on
physical access

PKa

Initiating Device

A

PKb Phase 1: ECDH Key Exchange

Non-Initiating Device

B

Cb = f1(PKbx,PKax,Nb,0)

Na

Phase 2: Authentication Stage 1Nb

Va = g(PKax,PKbx,Na,Nb) Vb = g(PKax,PKbx,Na,Nb)

User checks if Va = Vb and
confirms on each end

Abort if Cb is not correct

Proceed if user
confirms ok

Proceed if user
 confirms ok

Ea = f3(DHKey,Na,Nb,0,
 IOcapA,A,B)

Eb = f3(DHKey,Na,Nb,0,
 IOcapB,B,A)

Eb

Ea

Abort if Ea is not correct

Abort if Eb is not correct Phase 3: Authentication Stage 2

Both sides compute link key
f2(DHkey,N

master
,N

slave
,”btlk”,

ADDR_MASTER, ADDR_SLAVE)
Phase 4: Link key calculation

LMP protocol Phase 5: Authentication and Encryption

Formal Verification of Bluetooth

22

• Previous security analysis of Bluetooth had not detected
misbinding

• We modeled Bluetooth numeric comparison and other pairing
protocols with ProVerif

• Physical channel defines device identity
• Check correspondence between user

intentionand completed pairing

→ Can detect misbinding

• Analysis yielded a new
double-misbinding case

B1 A2

A1
B2

Five Variations of the Misbinding Attack

23

