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Formal Verification in Protocol Development
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rotocol Modeling

Protocol

EAP Peer EAP Server
...continuing from common handshake
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\
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Model

(* EAP-Response/Identity *)

in(c, (=NAI));

(* EAP-Request/EAP-NOOB (type 1) *)
out (c, (tl));

(* EAP-Response/EAP-NOOB (type 1) *)
in(c, (=tl,=s0));

(* Generate values *)
new Vers:Ver 1; new PeerId:PeerId t; new ServerInfo:Info t;
new Cryptosuites:Cryptosuite 1; new Dirs:Dir t;

(* EAP-Request/EAP-NOOB (type 2) *)

out (¢, (t2,Vers,Peerld,Cryptosuites,Dirs,ServerInfo));

(* EAP-Response/EAP-NOOB (type 2) *)

in(c, (=t2,Verp:Ver t,=Peerld,Cryptosuitep:Cryptosuite t,
Dirp:Dir t, PeerInfo:Info t));

(* Generate nonce *)
new Ns:N_t;

(* Server public key *)
let PKs = pk(SKs) in

(* EAP-Request/EAP-NOOB (type 3) *)
out (c, (t3,PeerlId,PKs,Ns));

(* EAP-Response/EAP-NOOB (type 3) *)
in(c, (=t3,=Peerld,PKp:K t,Np:N t));

(* EAP-Failure *)
out (¢, EAP Failure);




Protocol Modeling
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Dolev-Yao Attacker

* Attacker can read, modify, delete, and inject messages.
* Attacker can not decrypt messages without encryption keys.




Use-cases

* Formal verification is useful for..
° _.finding attacks in large protocols.
° ..spotting mistakes in your design.

° _.finding variations of attack traces.

* Formal verification does not..

° ..prove correctness of the protocol.

° _.find implementation issues.
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Case study:

Misbinding in device
pairing with Bluetooth

Gemes  |n: Proceedings of the 2019 ACM Asia conference on computer and communications security,
Asia CCS '19. ACM, New York; 2019. p. 453—-464. https://doi.org/10.1145/3321705.3329813. !




Bluetooth numeric comparison

1. Make device B discoverable
2. On device A, search and select B

il




Bluetooth numeric comparison

1. Make device B discoverable
2. On device A, search and select B
3. Key exchange in background




Bluetooth numeric comparison

Make device B discoverable

On device A, search and select B
Key exchange in background
Compare 6-digit codes and press OK

914030
OK

A

914030

OK
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Bluetooth numeric comparison

Make device B discoverable

On device A, search and select B

Key exchange in background

Compare 6-digit codes and press OK — Paired!

PAIRED PAIRED PAIRED

A
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Initiating Device

A

B

PKa

PKb

Cb = f1(PKbx,PKax,Nb,0)
Na

Nb

| Abort if Cb is not correct |

Non-Initiating Device

Phase 1: ECDH Key Exchange

Phase 2: Authentication Stage 1

Va = g(PKax,PKbx,Na,Nb)

Vb = g(PKax,PKbx,Na,Nb)

Proceed if user
confirms ok

User checks if Va = Vb and
confirms on each end

Proceed if user
confirms ok

Ea = f3(DHKey,Na,Nb,0,
IOcapA,A,B)

Eb = f3(DHKey,Na,Nb,0,
IOcapB,B,A)

Ea

Abort if Ea is not correct

Eb

Abort if Eb is not correct

Both sides compute link key
f2(DHkey,N, _...N. .. btlK",

ADDR_MASTER, ADDR_SLAVE)

LMP protocol

Phase 3: Authentication Stage 2

Phase 4: Link key calculation

Phase 5: Authentication and Encryption



Demo:

Discovering the misbiding
attack with ProVerif



ProVerif

* ProVerif is a tool for modeling and automatic verification of cryptographic protocols and
their security goals.
* It can be used for proving secrecy and authentication properties.

* ProVerif analyzes the protocol over an unbounded number of sessions and messages. It
tries to construct an attack trace when the target property fails.

° Results are either true, false, or undecided.
* Models are written in the typed pi calculus and can be divided into three parts:
1. Declarations formalize the behavior of cryptographic primitives.
2. Process macros allow sub-processes to be defined, in order to ease development.
3. Amain process, which using macros encode the protocol itself.
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Misbinding in Bluetooth

il

Adversary has
limited control of B
(Malicious app)
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Misbinding in Bluetooth

A

il

-

Attacker has
another device
named “B”

Adversary has
limited control of B
(Malicious app)

16



Misbinding in Bluetooth

@)
Key exchange
between wrong

devices

Attacker has
another device
‘ named “B”

HB”

Adversary has
limited control of B
(Malicious app)




Misbinding in Bluetooth

914030

Attacker has
@ @ another device
named “B”

Key exchange 2K Attacker relays
between wrong 6-diait code
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914030 914030 Adversary has

limited control of B
(Malicious app)
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OK OK

O

A

O Malicious app

spoofs Ul




Misbinding in Bluetooth

4
?Attacker clicks OK |

914030 Attacker has
(1) @ another device
Key exchange OK named “B”
between wrong

devices

Attacker relays
‘ 6-digit code

-
]
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]
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914030 914030 Adversary has

Z limited control of B
QUser clicks OK | (Malicious app)
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OK OK

O

A

O Malicious app

spoofs Ul




Misbinding in Bluetooth

&
4

PAIRED

PAIRED

PAIRED

Attacker has
another device
named “B”

Adversary has
limited control of B
(Malicious app)
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Initiating Device

Non-Initiating Device

A B

PKa

PKb

Phase 1: ECDH Key Exchange

Cb = f1(PKbx,PKax,Nb,0)
Na

Nb

| Abort if Cb is not correct |

Phase 2: Authentication Stage 1

Va = g(PKax,PKbx,Na,Nb)

Vb = g(PKax,PKbx,Na,Nb)

Proceed if user
confirms ok

User checks if Va = Vb and
confirms on each end

Proceed if user
confirms ok

Ea = f3(DHKey,Na,Nb,0,
IOcapA,A,B)

Eb = f3(DHKey,Na,Nb,0,
IOcapB,B,A)

Ea

Abort if Ea is not correct

Eb

Abort if Eb is not correct

Phase 3: Authentication Stage 2

Both sides compute link key
f2(DHkey,N N_ ,"btlk”,

master’” “slave’

ADDR_MASTER, ADDR_SLAVE)

Phase 4: Link key calculation

LMP protocol

Phase 5: Authentication and Encryption

Why does Bluetooth
not detect misbinding?

Could it?

Devices have no verifiable
identifiers!

Authentication based only on
physical access
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Formal Verification of Bluetooth

* Previous security analysis of Bluetooth had not detected
misbinding
* We modeled Bluetooth numeric comparison and other pairing

protocols with ProVerif
* Physical channel defines device identity

* Check correspondence between user
intentionand completed pairing

— Can detect misbinding

* Analysis yielded a new
double-misbinding case
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