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Lecture 10: Camera calibration &
single view metrology

* Camera calibration is the process of determining the
internal camera parameters, which define the mapping
between incoming light rays and image pixels

* Single view metrology provides methods for measuring
relative lengths from a single image by utilizing certain
assumptions

Acknowledgement: many slides from Svetlana Lazebnik, Derek Hoiem, Steve Seitz,
and others (detailed credits on individual slides)



Reading

e Szeliski’s book, Sections 6.2 and 6.3 in 15t edition

* Hartley & Zisserman book, Chapters 6, 7, and 8



Source: S. Lazebnik

Calibrating a single camera

Odilon Redon, Cyclops, 1914



Source: S. Lazebnik

Our goal: Recovery of 3D structure

« Recovery of structure from one image is
iInherently ambiguous
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Single-view ambiguity
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Source: S. Lazebnik

Single-view ambiguity
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Source: S. Lazebnik

Our goal: Recovery of 3D structure

 We will need multi-view geometry




Source: S. Lazebnik

Review: Pinhole camera model

Note that usually y-axis
points down. That
convention leads to
mathematically
equivalent formulas
and can be obtained
here by 180 degree

rotation around z-axis. ¢ &&—
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 Normalized (camera) coordinate system: camera
center is at the origin, the principal axis is the z-axis, X
and y axes of the image plane are parallel to x and y

axes of the world

« (Goal of camera calibration: go from world coordinate
system to image coordinate system



Review: Pinhole camera model

Source: S. Lazebnik
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Source: S. Lazebnik

Principal point
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Principal point (p): point where principal axis intersects the
Image plane

Normalized coordinate system: origin of the image is at the
principal point

Image coordinate system: origin is in the corner



Principal point offset

Source: S. Lazebnik

Py

y A

.

b J—
X

T Yeam

p.—)—
Xcam

l
Py

We want the principal
point to map to (p,, p,)

instead of (0,0)

(X, Y, 2)> (fX/Z+p,fY/Z+p)

X
v (fX+Zp. )
p > fY;Zpy

1) )

f

/

P

Py
1

0

0
0

(X
Y
Z

A1




Principal point offset

Source: S. Lazebnik
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Source: S. Lazebnik

Pixel coordinates

1
Pixel size: X

m, m,

m, pixels per meter in horizontal direction,
m,, pixels per meter in vertical direction

-mx - -f px- -ax /J)x-
K= m)’ f p)’ - ay [))y
1 1 1

pixels/m h m o pixels



Source: S. Lazebnik

Camera rotation and translation

* In general, the camera
coordinate frame will be
related to the world
coordinate frame by a
rotation and a translation

« Conversion from world to camera coordinate system
(in non-homogeneous coordinates):

/Xcam - R(X - C')\
coords. of point coords. of camera center
in camera frame in world frame

coords. of a point
in world frame



Source: S. Lazebnik

Camera rotation and translation

R(X-C)

cam

< _(X R -RC|(X)} [R -RC
0 I 0 1

X=K[I|O]Xcam=K[R|—RE]X P=K[R|t] t=-RC



Camera parameters P = K[R t]

* |Intrinsic parameters

Source: S.

Principal point coordinates .

Focal length K - m
Pixel magnification factors [ y 1
Skew (non-rectangular pixels)

Radial distortion

radial distortion linear image

correction
—

Lazebnik




Camera parameters P = K[R t]

 |Intrinsic parameters
» Principal point coordinates
* Focal length
» Pixel magnification factors

« Skew (non-rectangular pixels)
* Radial distortion

« Extrinsic parameters

* Rotation and translation relative P — K[R — Ra]

to world coordinate system T

coords. of
camera center
in world frame

« What is the projection of the
camera center?

[ N]fj The camera center is the
PC=K[R -RC 1 =0 space of the
Source: S. Lazebnik - - projection matriX!




Camera calibration

x=K|[R t]

Ax] [* x k%
Ayl=|* * * *
y) * %k k%




Source: S. Lazebnik

Camera calibration

* Given n points with known 3D coordinates X
and known image projections x;, estimate the
camera parameters
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Source: S. Lazebnik

Camera calibration: Linear method

x.] [P/X,
Ax, = PX, x, xPX, =0 yi| x| P X, =0
1| [PX,
T T 7
0 - X X, (P \

X/ 0 -xX ||P,|=0
__iniT x, X, 0 _\P3)

Two linearly independent equations



Source: S. Lazebnik

Camera calibration: Linear method

0 X —pX
X, 0 —-xX/|(P)
P,|=0 Ap
0" X, -»X, Py
X' 0 -x X

0

P has 11 degrees of freedom
One 2D/3D correspondence gives us two linearly independent

equations
* 6 correspondences needed for a minimal solution

Homogeneous least squares: find p (||p|[=1) minimizing ||Ap||?
« Solution given by eigenvector of ATA with smallest eigenvalue



Source: S. Lazebnik

Camera calibration: Linear method
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* Note: for coplanar points that satisfy I1"’X=0,
we will get degenerate solutions (11,0,0),
(0,IL,0), or (0,0,IT)



Source: S. Lazebnik

Camera calibration: Linear method

The linear method only estimates the entries of the
projection matrix:

oL (X
Ax * %k %k 3k
Ay|=|* * * * Y
Y4
/‘L * %k %k 3k
|
What we ultimately want is a decomposition of this

matrix into the intrinsic and extrinsic parameters:

x=K[R t|X

This can be achieved via the RQ matrix
decomposition (see Sec. 6.2.4 of H&Z book)



Camera calibration: Linear method

* Advantages: easy to formulate and solve

« Disadvantages
* Doesn’t directly tell you camera parameters
* Doesn’t model radial distortion

« Can’timpose constraints, such as known focal length and
orthogonality

* Non-linear methods are preferred

» Define error as sum of squared distances between
measured 2D points and estimated projections of 3D points

* Minimize error using Newton’s method or other non-linear
optimization

* The iterative optimization by non-linear methods can be
initialized with the solution provided by the linear method

Source: D. Hoiem



A taste of multi-view geometry: Triangulation

* Given projections of a 3D point in two or more
images (with known camera matrices), find
the coordinates of the point

Source: S. Lazebnik



Source: S. Lazebnik

Triangulation

* Given projections of a 3D point in two or more
images (with known camera matrices), find
the coordinates of the point

\/\/XY ?

X
2
X4 ><




Source: S. Lazebnik

Triangulation

 We want to intersect the two visual rays
corresponding to x, and x,, but because of
noise and numerical errors, they don’t meet

exactly
N
/\/X'?

X
2
X4 ><




Source: S. Lazebnik

Triangulation: Geometric approach

* Find shortest segment connecting the two
viewing rays and let X be the midpoint of that
segment

X
2
X4 ><



Source: S. Lazebnik

Triangulation: Nonlinear approach

Find X that minimizes

d* (%, P X) +d* (X, P,X)




Source: S. Lazebnik

Triangulation: Linear approach

Ax,=PX x,xPX=0 [x,]PX=0
L%, =P,X  x,xPX=0 [x,]P,X=0

Cross product as matrix multiplication:

axb=| a 0 -a||lb, |=[a,b




Source: S. Lazebnik

Triangulation: Linear approach

Ax,=PX x,xPX=0 [x,]PX=0
L%, =P,X  x,xPX=0 [x,]P,X=0

L]

Two independent equations each in terms of the 4
elements of X (but only 3 degrees of freedom since
scale is ambiguous and can be fixed)

This is again a linear least-squares problem which
can be solved as shown previously



Source: S. Lazebnik

Single-view metrology

Magritte, Personal Values, 1952

Many slides from S. Seitz, D. Hoiem



Camera calibration revisited

 What if world coordinates of reference 3D
points are not known?

* We can use scene features such as vanishing
points

T Vertical vanishing
point
.. (atinfinity)

Vanishing
line
@
VaniShing S . “ = ,,.A,:::‘,. ' : vanishing
point R o e

point

Slide from Efros, Photo from Criminisi



Source: S. Lazebnik

Recall: Vanishing points

image plane
\ . ] ]
vanishing point v
e

.§

camera

line in the scene

* All lines having the same direction share the same
vanishing point



Source: S. Lazebnik

Computing vanishing points

O A//V
X, +1d, | (x,/t+d,’ d, ]
X - Y, +1d, _ v,/ t+d, X - d,
"z, +1d, z,/t+d, © |4,
1 1/¢ 0

« X_is a point at infinity, v is its projection: v=PX_
 The vanishing point depends only on line direction
All lines having direction d intersect at X__



Source: S. Lazebnik

Calibration from vanishing points

« Consider a scene with three orthogonal vanishing
directions:

* Note: v,, v, are finite vanishing points and v, is an
infinite vanishing point



Source: S. Lazebnik

Calibration from vanishing points

« Consider a scene with three orthogonal vanishing
directions:

 We can align the world coordinate system with
these directions



Source: S. Lazebnik

Calibration from vanishing points

IR IR IR I EG

_****=[p1 P, P; p4]

® Ok || k|| K

p, = P(1,0,0,0)' — the vanishing point in the x direction
Similarly, p, and p, are the vanishing points in the y
and z directions

p,=P(0,0,0,1)" — projection of the origin of the world
coordinate system

Problem: we can only know the four columns up to

independent scale factors, additional constraints
needed to solve for them



Source: S. Lazebnik

Calibration from vanishing points

* Let us align the world coordinate system with three
orthogonal vanishing directions in the scene:
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« Each pair of vanishing points gives us a constraint
on the focal length and principal point



Source: S. Lazebnik

Calibration from vanishing points

T .
Hori- ' Viertical

I FVP I
zontal JIVP

|
1 Vertical

Horizon line,

1 finite vanishing point,
2 infinite vanishing points

Cannot recover focal
length, principal point is
the third vanishing point

2 finite vanishing points, 3 finite vanishing points
1 infinite vanishing point

Can solve for focal length, principal point




Source: S. Lazebnik

Rotation from vanishing points

C.
Av, =K[R| t][o’} - KRe,
.
AK'v,=Re,=[r, r, r,] | 0 |=r
0

Thus, AK v, =r,.
Get A, by using the constraint ||r,|*=1.



Calibration from vanishing points: Summary

« Solve for K (focal length, principal point) using three
orthogonal vanishing points

» Get rotation directly from vanishing points once
calibration matrix is known

« Advantages
* No need for calibration chart, 2D-3D correspondences
« Could be completely automatic

 Disadvantages
« Only applies to certain kinds of scenes

« Inaccuracies in computation of vanishing points
« Problems due to infinite vanishing points

Source: S. Lazebnik



Making measurements from a single image

Actual position of
Person A ———_||

Apparent position|| | —®
of person A Actual and
apparent position

of person B
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Apparent / Viewng

shape of room peephole

http://en.wikipedia.org/wiki/Ames room

Source: S. Lazebnik



Slide by Steve Seitz

Comparing heights

Vanishing
Point

Y ¢ \,




Slide by Steve Seitz

Measuring height

> - Y




Which is higher —the camera or the man in
the parachute?




Source: S. Lazebnik

Measuring height without a ruler

O Z

/.

ground plane

Compute Z from image measurements
* Need more than vanishing points to do this



Source: S. Lazebnik

Projective invariant

 We need to use a projective invariant. a quantity that
does not change under projective transformations
(including perspective projection)



Source: S. Lazebnik

Projective invariant

 We need to use a projective invariant. a quantity that
does not change under projective transformations
(including perspective projection)

* The cross-ratio of four points:

P,-P||P, -P,
P,-P,||P,-P,




Slide by Steve Seitz

The cross ratio

A Projective Invariant

« Something that does not change under projective transformations
(including perspective projection)

The cross-ratio of 4 collinear points

X
E_RHE_E Pﬂ?
E_EHE_R l?

HPI - PsH HP4 B PzH

Can permute the point ordering P, -P,| [P, - P

« 41 =24 different orders (but only 6 distinct values)
This is the fundamental invariant of projective geometry



Slide by Steve Seitz

Measuring height

scene cross ratio
@ I (top of object)

b-tllv, x|
-OR (reference point) Hb —I'H HVZ — tH - R
TR image cross ratio
B (bdttom of object)
ground plane X

scene points represented as P = image pointsas p=|y

Y
Z
1



Measuring height without a ruler
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2D lines in homogeneous coordinates

* Line equation: ax + by +c=0
»

I'x=0 where 1=|b|, x=|y

C 1

* Line passing through two points: 1=x, xx,

* Intersection of two lines: x =1, x1,
 What is the intersection of two parallel lines?

Source: S. Lazebnik



T Source: S. Lazebnik
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Source: S. Lazebnik

Measurements on planes
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Approach: unwarp then measure
What kind of warp is this?



Source: S. Lazebnik

Image rectification

-7;3; A7 V‘g '
e -

} J bR \
To unwarp (rectify) an image

« solve for homography H given p and p’
— how many points are necessary to solve for H?



Source: S. Lazebnik

Image rectification: example

Piero della Francesca, Flagellation, ca. 1455



Application: 3D modeling from a single image

J. Vermeer, Music Lesson, 1662

A. Criminisi, M. Kemp, and A. Zisserman,
Bringing Pictorial Space to Life: computer technigues for the

analysis of paintings, Proc. Computers and the History of Art,
2002

http://research.microsoft.com/en-us/um/people/antcrim/ACriminisi 3D Museum.wmyv




Application: 3D modeling from a single image

D. Hoiem, A.A. Efros, and M. Hebert, "Automatic Photo Pop-up"”, SIGGRAPH 2005.

http://dhoiem.cs.illinois.edu/projects/popup/popup_movie_450_250.mp4




Application: Image editing

Inserting synthetic objects into images:
http://vimeo.com/28962540

K. Karsch and V. Hedau and D. Forsyth and D. Hoiem, “Rendering Synthetic Objects into
Legacy Photographs,” SIGGRAPH Asia 2011



Application: Object recognition

D. Hoiem, A.A. Efros, and M. Hebert, "Putting Objects in Perspective", CVPR 2006



