

CIV-E1040 Construction Management: - Role in society & sub-sectors, construction production system, project phases, stakeholders

Lecture Ia

Antti Peltokorpi Assistant Professor Department of Civil Engineering, Aalto University antti.peltokorpi@aalto.fi

Agenda

- Construction sectors and role in society
- Special characteristics of construction
- Construction project: phases, processes, and stakeholders

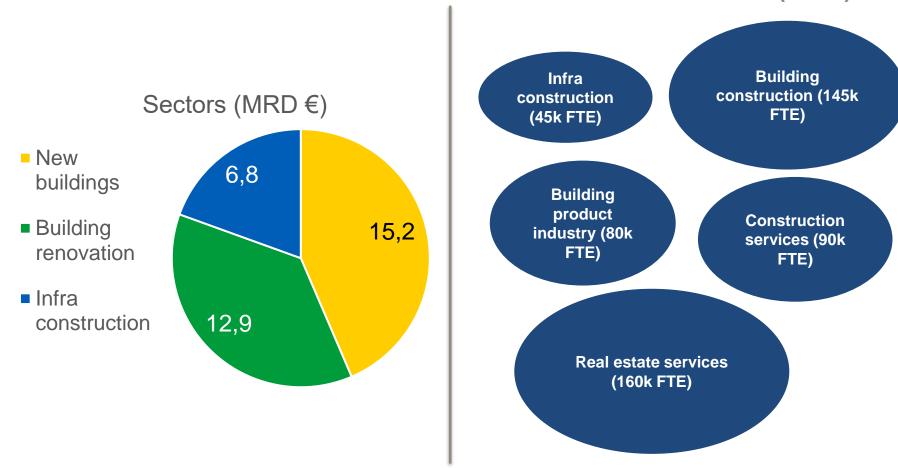
Learning outcomes

- 1. Explain role of construction in society and economy
- 2. Recognize main phases of a construction project, stakeholders and their tasks
- 3. Identify construction management terminology

Role of construction in society

Built environment in Finland:

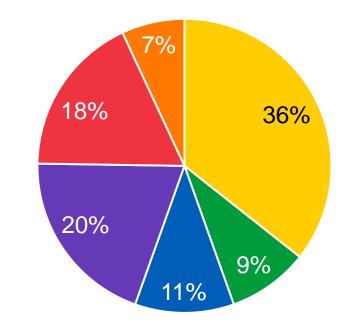
- 18 % of the yearly GDP
- 20 % of employed workers
- 70 % of investments and national wealth
- 38 % of emissions
- 42 % of energy consumption
- We spend 90 % of our time indoors and 99 % in built environment



Source: Rakennusteollisuus ry

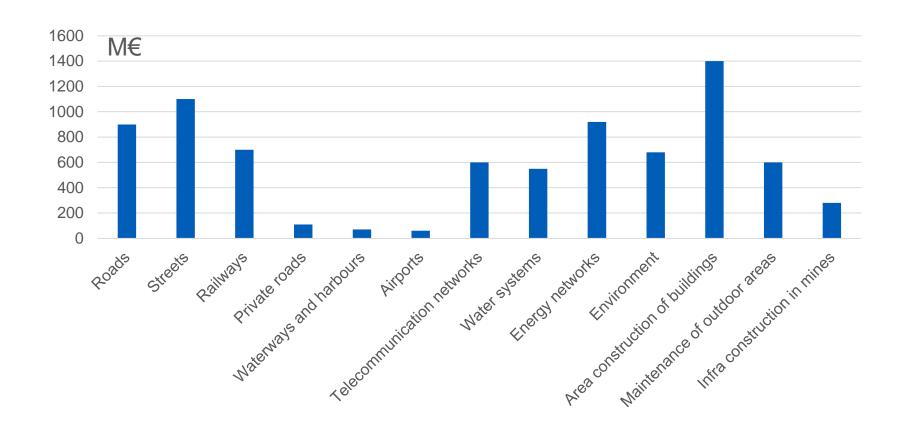
Construction sectors in Finland

EMPLOYMENT (FTEs)

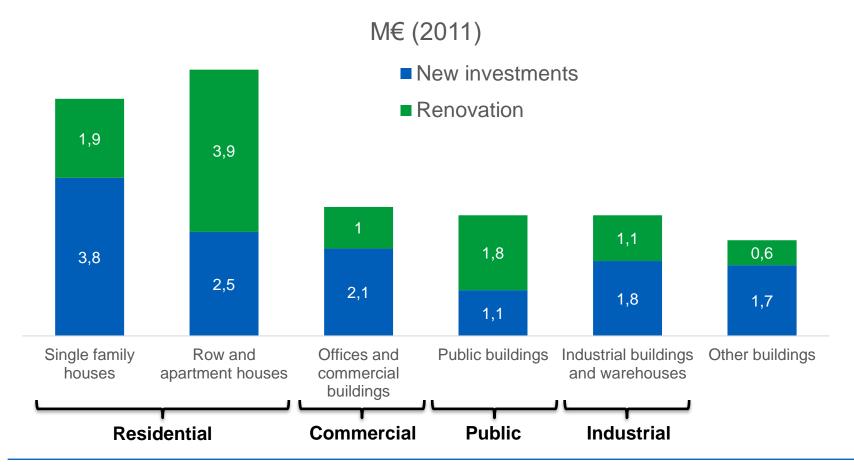


Source: Rakennusteollisuus ry

Customers of construction

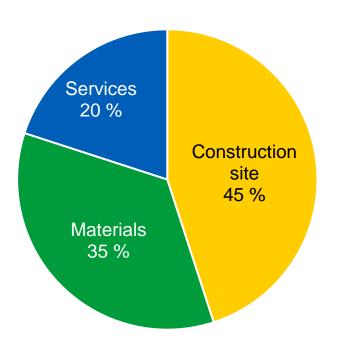

- Households
- Housing companies
- Property companies
- Other companies
- Municipalities
- Government

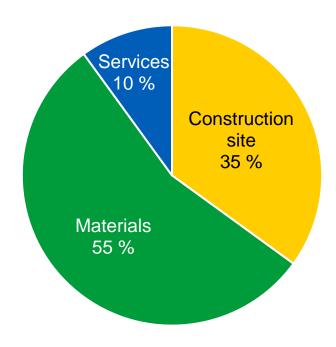
BtoB & BtoC


Infra construction and maintenance is not just roads and railways...

Source: Rakennusteollisuus ry

Value of end-product types in building construction and renovation




Source: Rakennusteollisuus ry

What resources are used and managed in construction?

Costs of infra construction

Costs of building construction

"Construction as a production system to transform many inputs into an integrated and unique output by managing and coordinating several production modes from processes to project"

Levels of Construction Management

1. On-site production

• Physical production phase, on-site management

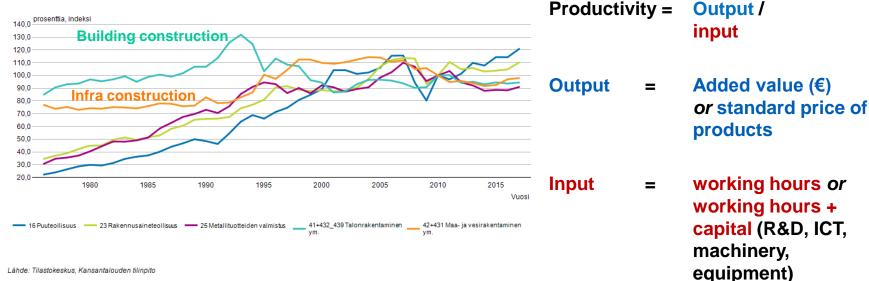
2. Project

 Delivery of project, need-design-production-use, stakeholder management, information management

3. Business / Enterprise

• Project portfolio, business strategies, production strategies, financing, R&D, human resource management, procurement, marketing

4. Industry


Practices, values, culture, education, laws

Special characteristics of construction

- End-products are typically large
- End-products have long life-cycle
- Aimed outcome unique in terms of technical, functional and/or aesthetical features
- Site-dependency: Every site is somewhat unique as a location and conditions
- National and local requirements for buildings vary
- Multi-professional and multi-firm organization used, changing from project to project
- Majority of production and assembly happens outside with varying and uncertain weather conditions
- Site and incomplete building (=product) work as "a factory space"
- Use of automated processes is rather low

Productivity in Finnish construction sector

Työn tuottavuus toimialoittain muuttujina Toimiala, Sektori, Taloustoimi, Tiedot ja Vuosi

Lähde: Tilastokeskus, Kansantalouden tilinpito

Productivity growth=

Technical development + efficiency increase + quality of inputs + management + logistics + organizational development

Construction sector's output doesn't include purchased materials and services from other sectors!

Construction Industry Features

1. Low productivity

Production _

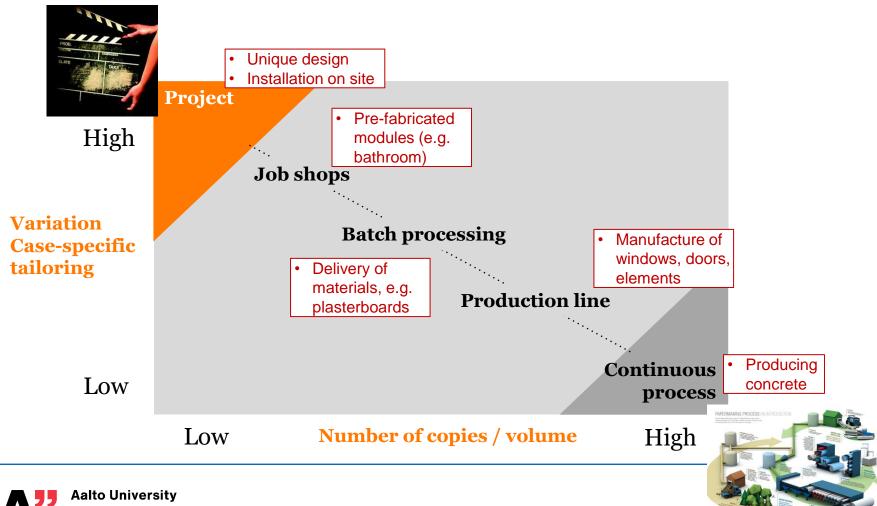
- 2. Decentralized business
- 3. Project driven business and culture
- 4. Local rather than global competition
- 5. Easy entry, low margin & high-risk business
- Moving

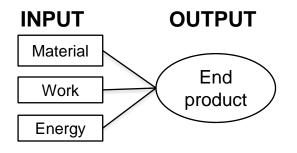
Waiting

6. The Game - to solve problems and avoid risks to materialize

Plenty of opportunities for disruptive innovations

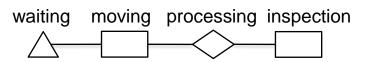
- Big data, situational awareness, algorithmic design and engineering
- 2. Sustainability as competitive advantage
- 3. New materials and production methods
- 4. Platform-based business models
- 5. Integrating science with human and knowledge management


How about car construction...

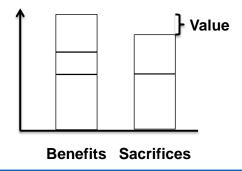

...instead of car manufacturing?

Project vs. Process as a production system

Three viewpoints to production performance: TFV


1. Transformation

MEASURE:

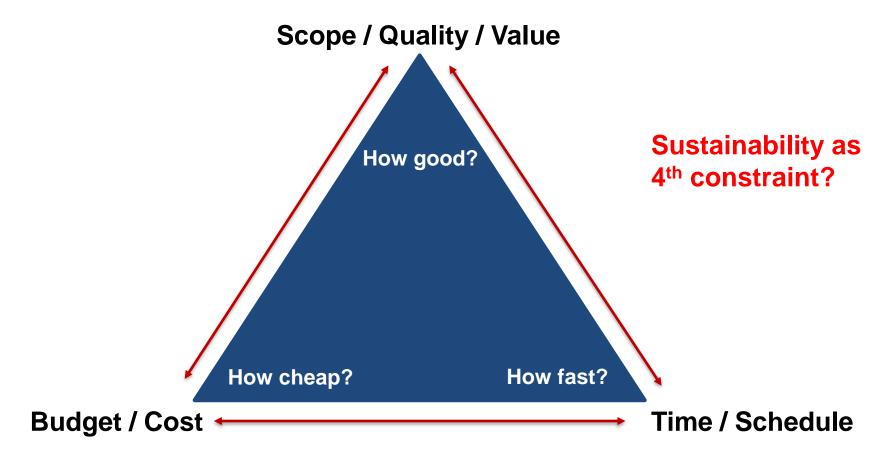

Efficiency

2. Flow

Lead time

3. Value

Fulfilment of the customer needs



Aalto University

Read more: Koskela (2000) An exploration towards a production theory and its application in construction. Doctoral dissertation.

Sacks (2016) What constitutes good production flow in construction? Construction Management and Economics.

Project management: The triple constraint

Construction projects traditionally seen as multi-stakeholder engineering projects

Type 2 projects Type 4 projects **Product** Research and No development organizational development **Methods** well Type 1 projects Type 3 projects defined **Systems** Yes **Engineering Development** Yes No Project goals well defined

Project management with different project types

No

Yes

Methods well defined Product breakdown Specialist group Quality, time Mission definition
Setting goals, Gates,
Organizational change:
Team building,
Communication,
Iterative definition cycles

Control of labor hours and costs,

Task/activity scheduling

Phase-based approach
Tight control
Changes (customer)

Yes No

Project goals well defined

Limitations of the traditional engineering project management

- Pre-defined time, cost, and scope/quality targets direct project managers to achieve targets, not to optimize them or maximize project value
- → "Design management is everything, production management is nothing" (or just not to make mistakes)
- "Design in the making"
- "Moving targets/value of the project"

Moving scope of the project, Case Tapiola project

Construction project - phases and processes

How does a construction project originate?

Starting points for a building construction project

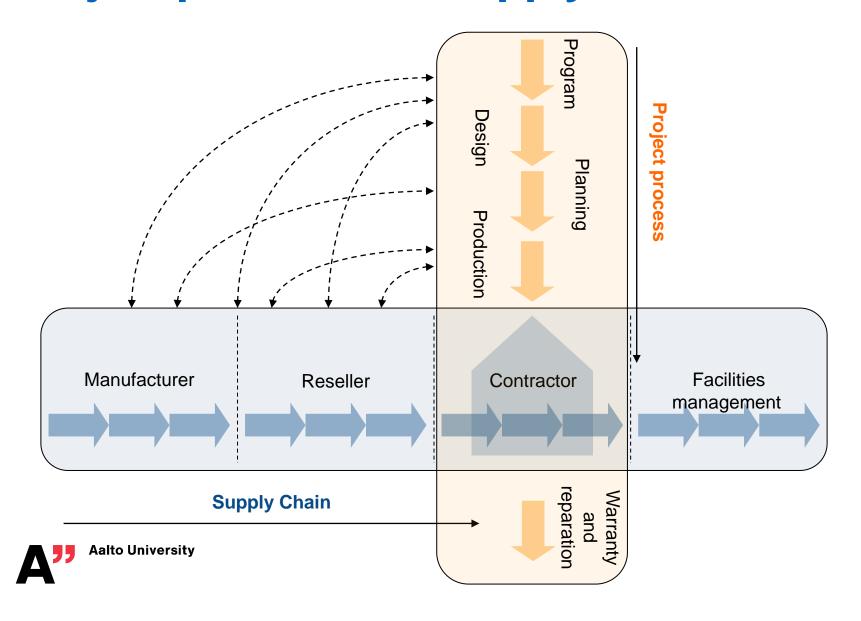
1. Need for space

2. Under-utilized (-performing) asset

Overview on construction project phases

- 1. Needs assessment
 - 3. Design proposals

2. Program planning


- 4. Master plan design
- 5. Construction permit tasks
 - 6. Detailed design
 - 7. Production planning
 - 8. Construction
 - 9. Start-up of operations
 - 10. Period of guarantee

OBS!

- Importance of phases vary a lot between projects
- 2. Phases can be conducted parallel
- 3. Process can be iterative, need to return previous phases

Project process vs. Supply chain

Typical phases of a construction project: Early phase design

Project manager is nominated

Designer(s) are selected

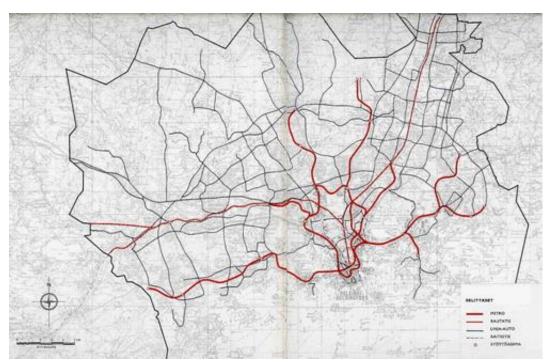
1. Needs assessment (Tarveselvitys)

- Justifying the need for space or need to modify existing space
- Preliminary description of needed facilities and their requirements
- Exploring alternative solutions (e.g. rental, new construction)
- Outcome: Project decision

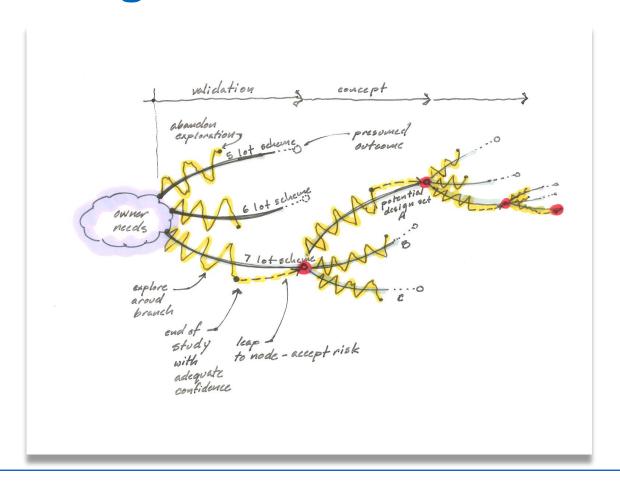
2. Program planning (Hanke-suunnittelu)

- Setting specific targets for functionality, quality, cost, timing and the maintenance
- Program plan is created which consists of general scope and quality targets, room program, and initial project delivery method
- Outcome: Investment decision

3. Design proposals (Ehdotussuun-nittelu)


- Drawing up alternative design solutions to meet the objectives set
- Outcome: Selected design proposal

Aalto University


Iteration is almost always valuable!

How long can be a project front-end phase?

Smith-Polvinen: Länsimetro, 1968

Working with design proposals: Set Based Design

Example of detailed room program

Hospital building

Region: Finland, Capital area

	1 LOBBY AND PUBLIC FACILITIES		Quantity	m2/a	total
	In English	In Finnish			
Р	1 Lobby Office	Aulatoimisto	1	50	50
Р	2 Info	Info	1	30	30
Р	3 Walk-in lobby features	Walk-in-aulatoiminnot	1	300	300
Р	5 Recruitment	Työhönotto	3	7	21
Р	6 Quiet room	Hiljentymistila	1	60	60
Υ	1 Checkroom	Vaatesäilytys	1	50	50
Υ	2 Toilets	WC	2	4,5	9
Υ	3 Toilets	WC	1	6	6
V	1 Entrance hall	Tuulikaappi	1	20	20
Α	1 Cleaning Rooms	Siivoushuone	1	15	15
Α	1 Kitchen	jakelukeittiö	1	20	20
Н	1 Job Lunch Restaurant Hall	Työpaikkalounasravintolasali	1	80	80
Н	1 Toilets	WC	2	4,5	9
	2 COMMERCIAL SERVICE FACILITIES				
U	1 Business space	Liiketila	4	35	140
U	2 Business space	Liiketila	1	80	80
U	3 Social space	Sosiaalitila	7	3	21

Typical stages of a construction project: Detailed design

Focus moving from architect to engineers

4. Master plan design (Yleissuunnittelu)

- Selected proposal is developed to a feasible master plan including location, appearance, shape and layout
- •The master plan focuses both on a fixed main element and a flexible space element
- Outcome: Accepted master plan and principal drawings

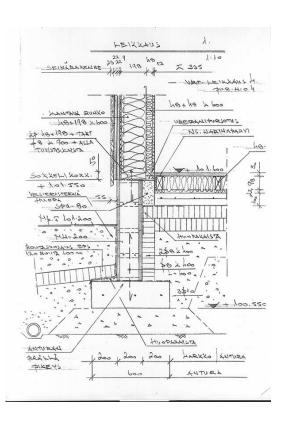
5. Construction permit tasks (Rakennuslupatehtävät)

- Finding out the authorization procedures necessary for the project
- Ensuring the eligibility of designers and principal drawings
- Preparing an application for authorization with necessary documentation
- •Outcome: Construction permit

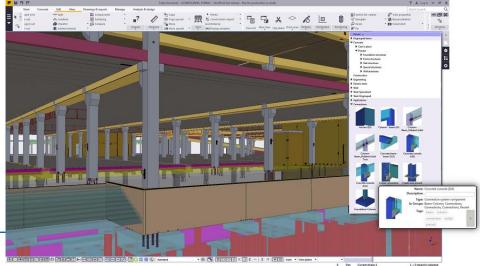
6. Detailed design (Toteutus-suunnittelu)

- Master plan is developed by designing and engineering structural and technical solutions (e.g. HVAC) and specific building parts
- Outcome: Accepted detailed drawings for procurement and production

Aalto University


Iteration is often valuable!

Examples of master plan and principal drawings



Examples of detailed design

Typical stages of a construction project: Production planning and control

From project plans toward mobilizing resources in supply chain

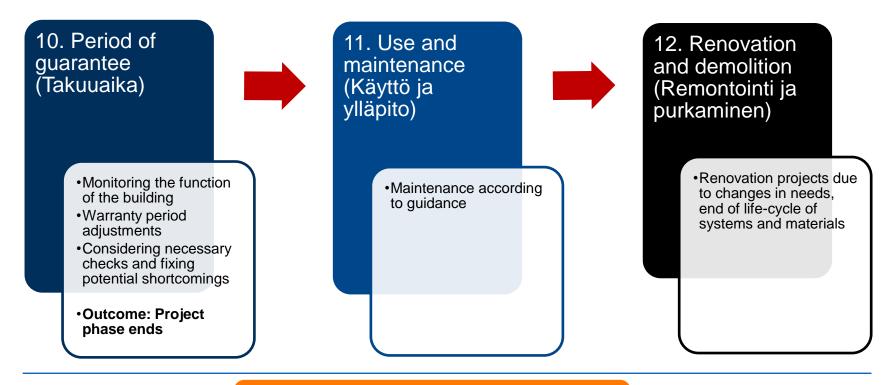
7. Production planning (Rakentamisen valmistelu)

- Organizing construction and procurements: competitions, selection of suppliers, negotiations and preparation of contracts
- Outcome: Decision to start construction

8. Construction (Rakentaminen)

- Ensuring the implementation of the agreements, the fulfillment of objectives
- •The end result meets the necessary operating and maintenance capability
- Outcome: Completed building ready for operation

9. Start-up of operations (Käyttöönotto)


- Ensuring operation and guidance of the used systems
- Transfer
- Outcome: Start of operations in building

Aalto University

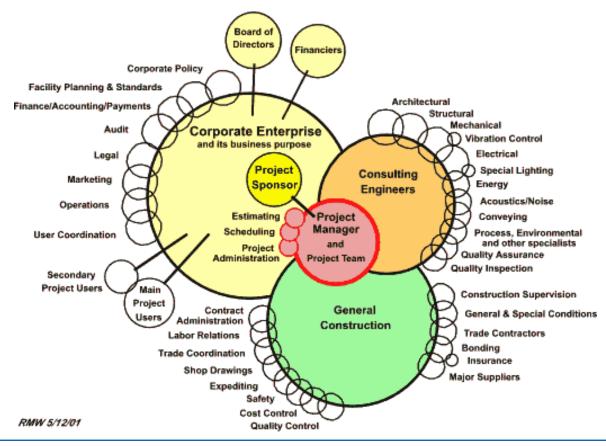
Iteration is **seldom** valuable!

Typical stages of a construction project: Operation and use phases

Transfer of responsibility from project organization to owner and user

Iteration is always waste!

Construction project stakeholders and their tasks


Project stakeholder

Project stakeholder =

"An individual, group, or organization, who may affect, be affected by, or perceive itself to be affected by a decision, activity, or outcome of a project"

(Project Management Institute, 2013)

Project organizations are typically complex


Different perspectives on project stakeholders

Contractual agreements

Owner's Engineer Contractor A/E Subcontractors Suppliers

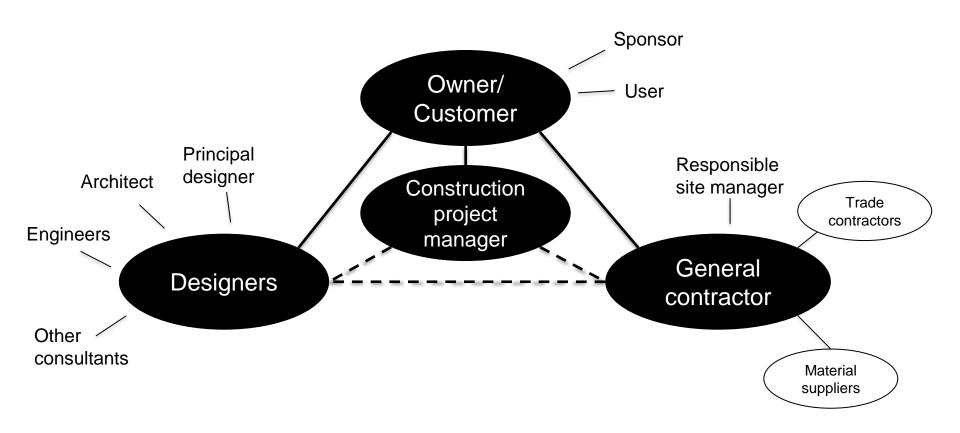
Figure 3: The general organization chart of DBB project in research study

Information flow

Tasks of construction project management (CPM)

Project management =

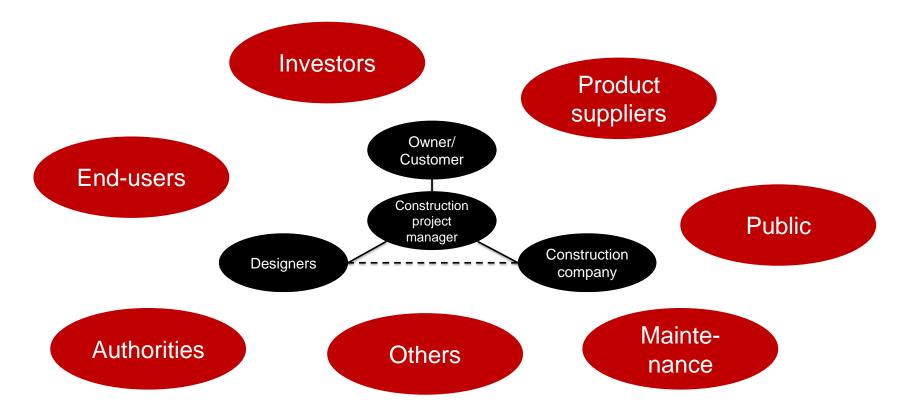
"the art of directing and coordinating human and material resources throughout the life of a project by using modern management techniques to achieve predetermined objectives of scope, cost, time, quality, and participating objectives."


(Project Management Institute, PMI)

Tasks of construction project management (CPM)

- Set quality, scope, time and cost objectives for the project, and monitor their fulfillment
- Select designers and prepare needed design contracts
- Control costs of the project or recruit cost consultant
- Make needed decisions and acquire construction permits
- Select project delivery method, organize competitive biddings, and prepare contracts
- Control construction work, and make necessary changes in the contracts
- Manage tasks related to start-up of operations and commitments during guarantee period

Main stakeholders in construction projects

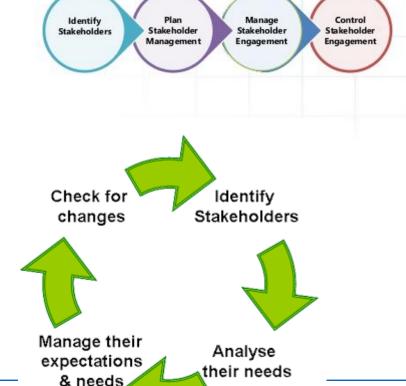

In Finnish:

Construction project manager = rakennuttaja Principal designer = pääsuunnittelija General contractor = pääurakoitsija Responsible site manager = vastaava työnjohtaja

Division of the CPM tasks

- Construction project management tasks can be performed by a skilled individual, management group, committee, or consult organization
 - Owner/customer conducts typically only part of the CPM tasks
- Division of CPM tasks and roles into decision-making and implementation
 - Decision-making:
 - Construction committee or person in charge (owner heavily involved)
 - Implementation:
 - Project manager together with project team (often outsourced for consultant)

Role of other stakeholders may vary a lot from project to project


Each stakeholder has an own viewpoint on project, and own project!

Frameworks and tools to manage stakeholders

Stakeholder Management Processes

Keep Satisfied Manage Closely Leverage existing Personal briefings High meetings Workshops Presentations Risk & issue Organisational awareness briefings Presentations POWER Monitor Keep Informed Newsletters No specific communications Posters Low Monitor Fivers Website messages from Programme email this group address INTEREST High Low

Example of main stakeholders during project phases

- 1. Needs assessment
- 2. Program planning
- 3. Design proposals
- 4. Master plan design
- 5. Construction permit tasks
 - 6. Detailed design
 - 7. Production planning
 - 8. Construction
 - 9. Start-up of operations

 - 10. Period of guarantee Aalto University

- O
- O
- 0 A
- Α
- C
- Е
- Е
- 0

- **Owner/Customer**
 - **Project manager**
- **Architect**
- **Engineers** Е
- **Authorities**
- Contractor

Activation

Stop presentation for couple of minutes:

Think about the most remarkable issue which according to your experience and understanding limits the efficiency and productivity in construction

Summary of the lecture

- Role of construction sector and its sub-sectors
- Special characteristics of construction
- Three viewpoints for production performance
- Project vs. process management in construction
- Construction project phases and main stakeholders

Further readings

- Koskela. An exploration towards a production theory and its application to construction. VTT publications. http://www.vtt.fi/inf/pdf/publications/2000/P408.pdf
- Crawford, L, & Pollack, J. (2004) Hard and soft projects: a framework for analysis. International Journal of Project Management, Vol. 22, 645-653.
- Schmenner and Swink (1998) On theory in operations management.
 Journal of Operations Management.

In Finnish:

- Talonrakennushankkeen kulku. RT-kortti. Rakennustietosäätiö.
- Hankkeen johtamisen ja rakennuttamisen tehtäväluettelo. Rakennustietosäätiö.

Weekly assignment I – Productivity in construction

- Productivity of construction operations has remained low. Familiarize with the topic through lecture material and at least two news articles or available reports which discuss about productivity in construction.
- Write an individual max 500-word essay of your <u>own reflections</u> about the most remarkable characteristics which hinder productivity.
- In your essay, ponder:
 - Which are rather stable characteristics which you think are hard to change?
 - Which are more cultural and management-related characteristics which may be possible to change? Present your own suggestions to change issues.
- Refer to used articles and reports in your essay, and show full reference in the end of the essay.
- Return your essay through MyCourses Assignments no later than Tuesday 9.11