

R. Lahdelma 1 Process integration and energy optimization

Linear Programming (LP)
Linear programming is the most commonly used optimisation technique in various
applications. There are many reasons for this. Linear programs are relatively easy to
formulate, use and understand. The LP optimisation techniques are also efficient and well
developed. A surprisingly large set of real-life problems can be represented as linear
programs, or approximated sufficiently well with linear programs. Finally, several more
advanced modelling and solution techniques are based on linear programming, such as
quadratic programming, fractional programming, integer linear programming, mixed integer
linear programming, constraint logic programming, multi-objective linear programming,
linear goal programming, etc.

Different formulations of LP problems

The standard formulation of an LP problem is minimization of a linear objective function
subject to linear inequality constraints:

 min n

j jj xc
1

s.t. (1)

 i
n

j jij bxA
1

 i=1,…,m

 xj 0 j=1,…,n

Instead of writing the problem using sums and iteration constructs, it is often more
convenient to use the vector and matrix notation:

 min z = cx

s.t. (2)

 Ax b

 x 0

z is the linear objective function to be minimized, x = [x1, …, xn]T is a column-vector of n
non-negative decision variables, c = [c1, …, cn] is a row-vector of cost coefficients, A is an
n m matrix of constraint coefficients, and b = [b1, …, bm]T is a column vector of right hand
side (RHS) coefficients (sometimes called the resource vector).

Other equivalent formulations can also be used:
 Maximization: max cx is equivalent to –min –cx.
 Greater than inequalities: Ax b is equivalent to -Ax -b.
 Equality constraints: Ax = b is equivalent to double inequalities Ax b and Ax b.
 Non-positive variables: y 0 can be substituted by –x where x 0.
 Unconstrained variables: unconstrained y can be substituted by difference x1-x2 where

x1,x2 0.
 Nonzero lower bound for variable: y ymin can be substituted by x=y-ymin where x 0.

R. Lahdelma 2 Process integration and energy optimization

When formulating an LP problem it is convenient to allow a more general formulation

 min (max) cx

s.t. (3)

 bmin Ax bmax (two sided constraints)

 xmin x xmax (lower and upper bounds)

In this form each constraint may be two-sided and decision variables may have non-zero
lower bounds and upper bounds. Choosing some bmin= bmax yields equality constraints. Upper
bounds can be disabled by choosing as upper bound.

Graphical solution of LP problems

Small problems with two decision variables can be visualized and solved graphically. Each
linear inequality constraint divides the plane into two half-planes: the feasible and infeasible
side. The feasible region is a convex polygon formed as the intersection of these half-planes.
The objective function is a direction in the plane. The optimum solution is always in some
corner of this polygon. (In rare cases, two corners may give the same optimal solution. Then
also all points on their connecting edge are optimal).

The intersections between constraints are so-called basic solutions of the LP problem (see
later).

Example: Consider the problem

 min z = -2 x1 - 3 x2

s.t.

 3 x1 + 2 x2 24

 x1 + 2 x2 12

 x2 4

 x1 8

 x1, x2 0

This problem is illustrated graphically in Figure 1. The feasible region is a convex polygon
with corners (0,0), (0,4), (4,4), (6,3), and (8,0). The dotted line shows a level where z is
constant. The minimal feasible solution z = -21 is found by shifting the level line as far to the
Northeast as possible while still touching the feasible region. As seen in the figure, this
happens at point (6,3). Similarly, the maximal feasible solution z = 0 is found at (0,0) by
shifting the line as far to Southwest as possible.

R. Lahdelma 3 Process integration and energy optimization

LP

0

2

4

6

8

10

12

0 2 4 6 8 10 12
x1

x2
Constr1

Constr2
Constr3

Constr4
Objective

(6,3)

(4,4)

z = constant

feasible region

(8,0)

(0,4)

(0,0)

Transforming an LP problem into the canonical form

Prior to solving an LP problem numerically, it is normally converted into a format, where
each constraint is an equality that includes a unique slack variable. This format may either
contain or not contain upper bounds for variables. The LP solution software will normally do
this automatically. However, it is useful to understand the transformation because it makes it
possible to understand the optimization process and results.

Canonical form with upper bounds

The following transformations are applied:

 Inequality constraints Ax b are converted to equality constraints by adding non-
negative slack variables into Ax + s = b, where s 0.

 Inequality constraints Ax b are multiplied by –1 and then converted by adding non-
negative slack variables into –Ax + s = –b, where s 0.

 The equality constraints Ax = b are augmented with so called artificial variables into
Ax + s = b, where 0 s 0.

R. Lahdelma 4 Process integration and energy optimization

 Two-sided constraints bmin Ax bmax can be efficiently handled by using a combined
slack/surplus variable: Ax + s = bmax, where 0 s bmax-bmin

After these transformations, the canonical form of the LP problem with upper bounds is
obtained:

 min z = cx

s.t. (4)

 Ax + s = b

 0 x xmax

 0 s smax

The x-variables are called structural variables. The s-variables are called slacks for short.
The only difference between the s-variables and x-variables is that the objective function
coefficients of s-variables are zeroes and the constraint coefficients of the s-variables form an
identity matrix. If we do not want to highlight these differences, we can extend the x-vector to
include the s-variables and augment the c and xmax vectors and the A-matrix correspondingly.
Then the LP problem can be written as

 min z = c’x’

s.t.

 A’x’ = b,

 0 x’ x’max.

In this form the matrix A’ consists of the original A corresponding to the original x-variables
and an m m identity matrix I corresponding to the s-variables. Non-zero lower bounds and
negative variables can be modelled easily through substitution of variables, as described
earlier.

For example the canonical form with upper bounds of the sample problem is

 min z = -2 x1 - 3 x2

s.t.

 3 x1 + 2 x2 + s1 = 24

 x1 + 2 x2 + s2 = 12

 0 x1 8

 0 x2 4

 0 s1, s2

Canonical form without upper bounds

The following transformations are applied:

R. Lahdelma 5 Process integration and energy optimization

 Upper bounds for variables are treated as inequalities.

 Inequality constraints Ax b are converted to equality constraints by adding non-
negative slack variables into Ax + s = b, where s 0.

 Inequality constraints Ax b are multiplied by –1 and then converted by adding non-
negative slack variables into –Ax + s = –b, where s 0.

 Equality constraints Ax = b are treated as two separate inequalities Ax b and Ax b.

 Two-sided constraints bmin Ax bmax are treated as two separate inequalities.

After these transformations, the canonical form of the LP problem without upper bounds is
obtained:

 min z = cx

s.t. (5)

 Ax + s = b

 x, s 0

In the canonical form without upper bounds, the problem is typically larger (has more
constraints and variables) than in the upper bounds formulation. The previous sample
problem can be written in canonical format without upper bounds as

 min z = -2 x1 - 3 x2

s.t.

 3 x1 + 2 x2 + s1 = 24

 x1 + 2 x2 + s2 = 12

 x2 + s3 = 4

 x1 + s4 = 8

 x1, x2, s1, s2, s3, s4 0

The Tabular Simplex algorithm

In the tabular Simplex algorithm, the optimisation problem is organized as a table of numbers
corresponding to the equality constraints. Equations can, of course, be reordered, multiplied
by factors and summed together without affecting their validity. The Simplex algorithm
performs such operations in order to transform the equations into a format where the optimal
solution is obvious.

Consider an LP problem in the canonical format. Writing also the objective function as an
equality, yields the form

R. Lahdelma 6 Process integration and energy optimization

 min z

s.t. (6)

 z - c1x1 - c2x2 - ... - cnxn = 0

 a11 x1 + a12 x2 + … + a1n xn + s1 = b1

 a21 x1 + a22 x2 + … + a2n xn + s2 = b2

 am1 x1 + am2 x2 + … + amn xn + sm = bm

 0 x xmax

 0 s smax

The Simplex algorithm is based on exploring basic solutions of the problem. A basis is a set
of linearly independent column vectors that in a linear combination can represent every
vector. The basic solutions correspond to intersections between constraints in graphical
representation of the problem. During the Simplex algorithm, exactly m variables xB are
basic. The remaining n variables xN are non-basic. The non-basic variables are set to their
lower (or upper) bounds. The m basic variables are then solved from the system of m linear
equalities.

Basis X1 x2 … xn s1 s2 … sm Solution
z reduced costs objective

names of
basic

variables
coefficient

matrix
current
solution

The simplex table for performing the necessary computations is organized as follows:

 To the left of the simplex table is a column showing the names of the variables that
form the current basis xB. The current basis may contain any selection of m variables
out of the n x-variables and m s-variables. The order in which the basic variables are
listed identifies from which equation that variable has been solved.

 The names of each variable are listed on top of the simplex table.

 The z-row shows the so-called reduced costs for each variable.

 The current objective function value appears in the upper right hand corner.

 Below the reduced costs is the coefficient matrix.

R. Lahdelma 7 Process integration and energy optimization

 The last column shows the current solution, i.e. the values of the basic variables xB.

During the algorithm, the simplex table is maintained in a format where the sub-matrix
corresponding to the basic variables is an identity matrix.

In the initial simplex table, the basis consists of all the slacks and all x-variables are non-
basic. This is convenient, because the sub-matrix corresponding to the slacks is an identity
matrix. The non-basic variables are set to zero (their lower bound). The initial solution vector
xB is then equal to the b-vector. For the moment, we are not concerned about the feasibility of
the solution.

Basis x1 x2 … xn s1 s2 … sm Solution
z -c1 -c2 … -cn 0 0 … 0 0
s1 a11 a12 … a1n 1 0 … 0 b1
s2 a21 a22 … a2n 0 1 b2

sm am1 am2 … amn … 1 bm

The initial simplex table corresponding previous sample problem in canonical format without
upper bounds is

Basis x1 x2 s1 s2 s3 s4 Solution
z 2 3 0 0 0 0 0
s1 3 2 1 0 0 0 24
s2 1 2 0 1 0 0 12
s3 0 1 0 0 1 0 4
s4 1 0 0 0 0 1 8

During each iteration of the Simplex algorithm, we want to enter a new variable to the basis
and remove an old variable from the basis so that the value of z improves (decreases) and the
feasibility of all feasible variables is maintained.

The entering variable is determined by examining the reduced costs of the non-basic
variables. The reduced cost of a variable represents the net decrease in z when the non-basic
variable is increased (and the basic variables are adjusted to satisfy the constraints). The
reduced costs of basic variables are by definition zero.

For example, in the sample table, increasing the value for x2 by +1 would (in order to
maintain the equality z-cx=0) decrease z by c2 = 3. Thus, z decreases if the reduced cost for
the entering variable is positive. When minimizing, the variable with the largest reduced cost
is typically chosen to enter the basis. When all reduced costs are non-positive, the solution is
optimal and the algorithm terminates.

The column corresponding to the entering variable is called the pivot column y and it is
highlighted in the sample table. The pivot column shows what happens to the basic variables
when the (non-basic) entering variable is moved from its bound. When the entering variable
increases from its lower bound, a positive y-element indicates that the corresponding basic
variable decreases (to maintain the equality), a negative element indicates that the basic
variable increases, and a zero indicates that the basic variable is unaffected. For example in
the initial table, increasing x2 by +1 decreases s1 by 2, s2 by 2, and s3 by 1, and leaves s4
unaffected.

R. Lahdelma 8 Process integration and energy optimization

If the variables are bounded only from below, only the positive y-elements corresponding to
decreasing basic variables are of interest. To protect any basic variable from becoming
infeasible (negative), the variable that first reaches zero value must leave the basis. This is the
variable that corresponds to the smallest ratio = mini xB

i/yi for yi>0 and xB
i 0. Negative xB

i
indicate infeasible variables. Protecting an already infeasible variable from becoming even
more infeasible is not a concern at this phase. The smallest ratio indentifies the pivot row,
i.e. the equation from which the entering variable must be solved. If no leaving variable is
found (all y-elements are non-positive), that indicates that the problem is unbounded and the
algorithm terminates.

The following table shows the ratios for determining in the sample problem. The smallest
ratio is 4 and it appears on the third equation row. Thus, s3 is the variable that must leave the
basis.

Basis X1 x2 s1 s2 s3 s4 Solution xB
i/yi

z 2 3 0 0 0 0 0
s1 3 2 1 0 0 0 24 12
s2 1 2 0 1 0 0 12 6

s3 0 1 0 0 1 0 4 4
s4 1 0 0 0 0 1 8 -

After the entering and leaving variables have been determined, the so-called pivot step is
performed. This step will return the table to a format where the basic variables correspond to
an identity matrix. This is done by applying the Gauss-Jordan elimination method on the
simplex table in such a manner that the pivot element at the intersection of the highlighted
pivot row and column becomes one and the remaining parts of the pivot column become zero.

The Gauss-Jordan method is applied as follows. The pivot row is divided by the pivot
element to make the pivot element equal to 1. In the table above, the pivot element was
already 1 so the division was redundant. The remaining elements yi of the pivot column are
eliminated through row-operations by subtracting yi times the transformed pivot row from
each row i, including the reduced cost row (row zero).

The following table shows the necessary Gauss-Jordan elimination operations on our sample
problem. The last column indicates what row operations have been applied. Each cell shows
the formula for computing the new value. Observe that the pivot row needs no transformation
in this case, because the pivot element y3 is already one. Also, the last row needs no
processing, because y4 is already zero. Also, because the pivot row contains zeroes on
columns x1, s1, s2 and s4, no operations on these columns are needed.

Basis X1 x2 s1 s2 s3 s4 Solution operation
z 2 3-3 1 0 0 0-3 1 0 0-3 4 -= 3 r
s1 3 2-2 1 1 0 0-2 1 0 24-2 4 -= 2 r
s2 1 2-2 1 0 1 0-2 1 0 12-2 4 -= 2 r
x2 0 1/1 0 0 1/1 0 4/1 /= 1
s4 1 0 0 0 0 1 8 -= 0 r

The following table shows the result after the row-operations. The z-value has improved from
0 to –12. The variable x2 is now in the basis on row 3, which is indicated in the basis-column.
The reduced cost of x2 is zero and the column of x2 is part of the identity matrix formed by all
basic variables. To see the identity matrix, the basic columns would have to be sorted into the

R. Lahdelma 9 Process integration and energy optimization

order specified in the basis column. Finally, observe that the column of s3 that has been
removed from the basis, is no longer a part of the identity matrix.

Basis x1 x2 s1 s2 s3 s4 Solution
z 2 0 0 0 -3 0 -12
s1 3 0 1 0 -2 0 16
s2 1 0 0 1 -2 0 4
x2 0 1 0 0 1 0 4
s4 1 0 0 0 0 1 8

This table is not yet optimal, because the reduced cost for x1 is positive. Choosing x1 as the
entering variable and computing the xB/y ratios identifies row 2 as the pivot row and s2 as the
leaving variable.

Basis x1 x2 s1 s2 s3 s4 Solution xB
i/yi

z 2 0 0 0 -3 0 -12
s1 3 0 1 0 -2 0 16 5.333
s2 1 0 0 1 -2 0 4 4
x2 0 1 0 0 1 0 4 -
s4 1 0 0 0 0 1 8 8

The new table after pivoting is still not optimal, because now the reduced cost of s3 is
positive. This time the pivot row is row 1 with leaving variable s1.

Basis x1 x2 s1 s2 s3 s4 Solution xB
i/yi

z 0 0 0 -2 1 0 -20
s1 0 0 1 -3 4 0 4 1
x1 1 0 0 1 -2 0 4 -
x2 0 1 0 0 1 0 4 4
s4 0 0 0 -1 2 1 4 2

After the row-operations we obtain an optimal table with z = -21.

Basis x1 x2 s1 s2 s3 s4 Solution
z 0 0 -0.25 -1.25 0 0 -21
s3 0 0 0.25 -0.75 1 0 1
x1 1 0 0.5 -0.5 0 0 6
x2 0 1 -0.25 0.75 0 0 3
s4 0 0 -0.5 0.5 0 1 2

Shadow prices

The reduced costs for slack variables in the optimal simplex table are called shadow prices
for constraints. The shadow price indicates how the objective function changes when the
right-hand side (resource) of corresponding constraints is modified a little. The shadow price
is zero for inactive (non-binding) constraints, and non-zero for active (binding) constraints.

In optimal table of the previous example, constraints 1 and 2 are active, which is reflected by
negative shadow prices (reduced costs for slack variables s1 and s2). This indicates that
reducing the right hand side (resource) of the two first vectors disproves (increases) the
objective function value, and increasing the resource improves (decreases) the objective
function value by 0.25 and 1.25 units, correspondingly. The shadow prices for constraints 3

R. Lahdelma 10 Process integration and energy optimization

and 4 are zero, which means that adjusting their right-hand side does not affect the optimum.
When using shadow prices for sensitivity analysis, it is necessary to understand that the
shadow price may be valid only subject to a small (even infinitely small) change in the
resource. A more robust method for sensitivity analysis is to modify the model parameters
and re-optimize the model.

Tabular Simplex with upper bounds

Upper bounds of structural variables can be handled as separate inequality constraints, as was
done in the previous example. This, however, increases the size of the problem unnecessarily.
A much more efficient technique is to handle the upper bounds directly in the algorithm.

Let us consider a variable with lower bound zero and non-negative upper bound 0 xj xj
max.

We define a new variable xj* = xj
max-xj. Both variables have the same bounds, but when xj is

on its upper bound, xj* is zero and when xj is zero, xj*= xj
max. The idea is to substitute xj with

xj* whenever xj reaches its upper bound, and substitute xj* with xj when xj* reaches its upper
bound.

Determining the pivot row is slightly more complicated when upper bounds are present. It is
necessary to check if some variable reaches its upper bound when the entering variable is
moved. This is done by checking the ratios (xB-xB,max

i)/yi also for yi<0. Prior to removing a
variable from the basis based on the upper bound check, the variable substitution should be
applied. The third possibility is that the entering variable xj itself reaches its upper bound
before any basic variable reaches its either bound. To allow the algorithm to work also when
the current solution is infeasible, the test is omitted for variables that are already on the
wrong side of their bound. Thus, the maximum step to make is

 max,

max

max, 0when
00when

/
/

min B
i

B
ii

B
ii

j

i
B
i

B
i

i
B
i

xxy
xy

x
yxx

yx
 (7)

Consider the sample problem with upper bounds 0 x1 8, and 0 x2 4. The simplex table is

Basis x1 x2 s1 s2 Solution
z 2 3 0 0 0
s1 3 2 1 0 24 12
s2 1 2 0 1 12 6

The xB/yi –ratios would allow an increase of 6 in x2. However, in this case the minimum =
4 corresponding to the entering variable itself.

The upper bound substitution can be done very easily on the simplex table. A non-basic
variable is substituted by subtracting xj

max times the variable column from the solution vector
and negating then the column. Substituting x2 = 4-x2* in the previous table gives

R. Lahdelma 11 Process integration and energy optimization

Basis x1 x2* s1 s2 Solution
z 2 -3 0 0 -12
s1 3 -2 1 0 16 5.333
s2 1 -2 0 1 4 4

Comparing this solution with the previous example after the first iteration we observe that the
basis is different, but the solution is essentially the same (same values for z, x1, x2, s1 and s2).
Next we enter x1 and remove s2 from row 2 with minimum = 4.

Basis x1 x2* s1 s2 Solution
z 0 1 0 -2 -20
s1 0 4 1 -3 4 1
x1 1 -2 0 1 4 2

This table is not optimal because the reduced cost of x2* is 1. Because y2 is negative and the
corresponding basic variable x1 has a finite upper bound of 8, we must compute the ratio as
(4-8)/-2 = 2. This time the ratio for the first row is smallest. Thus, we enter x2* and remove s1
from row 1 with minimum = 1.

Basis x1 x2* s1 s2 Solution operation
z 0 0 -0.25 -1.25 -21

x2* 0 1 0.25 -0.75 1 x2* = 4-x2
x1 1 0 0.5 -0.5 6

This table is optimal. To obtain the solution in terms of the original variables, we can
substitute the x2* with 4-x2. Because x2* is basic, this substitution affects only the x2 row.

Basis x1 x2 s1 s2 Solution operation
z 0 0 -0.25 -1.25 -21
x2 0 -1 0.25 -0.75 -3 *= -1
x1 1 0 0.5 -0.5 6

However, negating the column of x2 has made the identity matrix element –1. To restore the
identity matrix, the row must yet be multiplied by –1.

Basis x1 x2 s1 s2 Solution
z 0 0 -0.25 -1.25 -21
x2 0 1 -0.25 0.75 3
x1 1 0 0.5 -0.5 6

This same solution was found in the previous example without the upper bounds technique.

Handling Infeasibility

So far, we have assumed that the initial solution to the LP problem is feasible, i.e., all non-
basic variables are within their bounds. This situation is true for example in problems without
upper bounds, where all constraints are of less or equal type with non-negative b. The
Simplex algorithm will maintain the feasibility, while improving the objective function. If the
initial solution is infeasible for some variables, the algorithm will preserve the feasibility of

R. Lahdelma 12 Process integration and energy optimization

any feasible variables. The algorithm may also accidentally make some or all of the infeasible
variables feasible, but cannot guarantee that all variable eventually become feasible.

To guarantee that the algorithm always finds a feasible optimal solution, it is necessary to
handle the infeasibilities somehow. The so-called two-phase technique is based on first
solving a related LP problem whose optimal solution provides a feasible solution for the
original problem. In the second phase, the original problem is solved starting from the found
feasible solution. If the problem is in the canonical form with upper bounds (4) and we start
with a slack basis, the infeasibilities are due to some bi<0 or some bi>si

max. The objective in
the first phase is then to minimize these infeasibilities:

 min z’ =
0:: max B

ii
B
i bi isbi i ss

s.t. (8)

 Ax + s = b,

 0 x xmax

 0 s smax.

A more efficient single-pass technique is to use an objective function that is a linear
combination of the original objective function and penalty terms:

 min (f c+F) x (9)

Here x is the extended variable vector (including the slacks), f is a non-negative scaling factor
(typically in the range [0,1], ideal value depends on problem type), and F is a row-vector of
penalty terms

feasibleiswhen

when
0when

0
1
1

max

j

jj

j

j

x
xx

x
F (10)

The objective function is modified during the algorithm. When a variable becomes feasible,
the corresponding F-coefficient is set to zero. When the overall solution becomes feasible,
the original objective function is restored by assigning f = 1. If the algorithm stops with an
optimal but infeasible solution, this can mean that f is too large. In such cases f is decreased
or set to zero and the algorithm proceeds. If no feasible solution is found even with zero f,
this means that the problem is infeasible (has no feasible solutions).

The penalty method is more efficient than the two-phase method, because it allows advancing
simultaneously towards a feasible and optimal solution. There are additional benefits with the
penalty method when solving large or numerically difficult LP problems. Sometimes the
feasibility of the problem may be lost during the iterations due to numerical inaccuracy in the
computations. The penalty function can be easily reapplied whenever this happens.

R. Lahdelma 13 Process integration and energy optimization

The Revised Simplex algorithm

The tabular Simplex algorithm is suitable only for rather small problems, because the
complete Simplex table has to be recomputed and maintained during the iterations. Large
problems are usually solved using the so-called revised Simplex algorithm. During each
iteration the Simplex algorithm needs only access to one row and two columns of the simplex
table: the z-row, pivot-column, and solution-column. The idea of revised Simplex is to
maintain information about the current basis inverse revising (updating) it as the basis
changes and to compute only necessary parts of the current simplex table.

We describe a generic variant of the Revised Simplex algorithm, which is commonly used for
solving large LP problems (Taha, 1982, Flannery et al., 1988, Aittoniemi, 1988). The
Simplex algorithm improves z iteratively by moving from one basic solution to another. In a
basic solution the (n-m) non-basic variables are set to their lower or upper bounds and the
values for the m basic variables are determined so that the constraints are satisfied. A, x and c
are partitioned as

 A = B | N , x = N

B

x
x

, c = cB | cN , (11)

where B is the non-singular basis matrix, N is the non-basic matrix, xB is the vector of basic
variables, xN is the vector of non-basic variables, and cB and cN are the cost coefficients for
the basic and non-basic variables. The constraints become then

 BxB + NxN = b. (12)

To satisfy the constraints, xB is solved in terms of xN:

 xB = B-1(b -NxN). (13)

The basic solution is feasible when the basic variables are within their bounds 0 xB xB,max
(any non-basic variable is by definition on its either bound and therefore feasible).
Introducing row vector such that

 = cBB-1, (14)

and substituting xB and into the objective function gives

 z = cBxB + cNxN = b + (cN - N)xN = b - dxN, (15)

where

 d = N - cN (16)

R. Lahdelma 14 Process integration and energy optimization

is the row vector of the reduced costs for non-basic variables. The reduced costs indicate how
z changes when non-basic variables are moved away from their bounds. The solution is
optimal, if the optimality condition holds:

dj 0 for all non-basic variables that are at their lower bound, and
dj 0 for all non-basic variables that are at their upper bound.

Any non-basic variable that does not satisfy the optimality condition will improve the
objective function value when entering the basis. Entering the basis means increasing the
variable from its lower bound or decreasing it from its upper bound. However, this movement
will affect the values of the basic variables. If the value of a non-basic variable N

jx is

changed by N
jx , then, according to (13), the vector of basic variable values changes by

N
jxy , where we have introduced the so-called pivot column

 y = B-1 N j. (17)

The maximum allowed change N
jx for the entering variable must be chosen such that the

feasibility of all basic variables is maintained, and one of the basic variables reaches its either
bound, i.e., leaves the basis. This means finding the largest (in magnitude) change N

jx such
that the following inequalities are still satisfied (and the entering variable itself does not
exceed it’s bound):

 max,0 BN
j

B xxyx . (18)

The following procedure implements the generic Revised Simplex algorithm.

Algorithm summary: Generic Revised Simplex with upper bounds

1. Start from some feasible basic solution (11).

2. Compute the basic variables xB from (13), from (14), and the reduced costs d from (16).

3. Find a variable N
jx to enter the basis so that z improves. For variables at lower bound this

condition is dj>0, and at upper bound dj<0. If there is no such variable, stop with optimal

xB.

4. Compute the pivot column y from (17).

5. Find the variable to leave the basis so that feasibility is maintained. The leaving variable is

the one that according to (18) reaches its upper or lower bound first when the entering is

moved away from its bound. If there is no such variable, stop with an unbounded solution.

R. Lahdelma 15 Process integration and energy optimization

6. Update the basis and go back to 2.

Different variants of the Revised Simplex algorithm use different techniques for representing
and maintaining the basis and/or its inverse. For example, in the Product Form of Inverse
(PFI) the basis inverse is represented as a product of elimination matrices, and each iteration
contributes to one additional factor (B-1 = Ek Ek-1 … E1). In the Elimination Form of Inverse
(EFI) a triangular factorisation of the non-inverted basis is maintained instead (B = LU,
where L is lower triangular and U is upper triangular).

