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Linear Programming (LP) 
Linear programming is the most commonly used optimisation technique in various 
applications. There are many reasons for this. Linear programs are relatively easy to 
formulate, use and understand. The LP optimisation techniques are also efficient and well 
developed. A surprisingly large set of real-life problems can be represented as linear 
programs, or approximated sufficiently well with linear programs. Finally, several more 
advanced modelling and solution techniques are based on linear programming, such as 
quadratic programming, fractional programming, integer linear programming, mixed integer 
linear programming, constraint logic programming, multi-objective linear programming, 
linear goal programming, etc. 

Different formulations of LP problems 

The standard formulation of an LP problem is minimization of a linear objective function 
subject to linear inequality constraints: 

 min n

j jj xc
1

 

s.t.  (1) 

 i
n

j jij bxA
1

 i=1,…,m  

 xj  0 j=1,…,n 

Instead  of  writing  the  problem  using  sums  and  iteration  constructs,  it  is  often  more  
convenient to use the vector and matrix notation: 

 min z = cx 

s.t.  (2) 

 Ax  b 

 x  0 

z is the linear objective function to be minimized, x = [x1, …, xn]T is a column-vector of n 
non-negative decision variables,  c = [c1, …, cn] is a row-vector of cost coefficients, A is an 
n m matrix of constraint coefficients, and b = [b1, …, bm]T is a column vector of right hand 
side (RHS) coefficients (sometimes called the resource vector).  

Other equivalent formulations can also be used: 
 Maximization: max cx is equivalent to –min –cx. 
 Greater than inequalities: Ax  b is equivalent to -Ax  -b. 
 Equality constraints: Ax = b is equivalent to double inequalities Ax  b and Ax  b. 
 Non-positive variables: y  0 can be substituted by –x where x  0. 
 Unconstrained variables: unconstrained y can be substituted by difference x1-x2 where 

x1,x2  0. 
 Nonzero lower bound for variable: y ymin can be substituted by x=y-ymin where x  0. 
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When formulating an LP problem it is convenient to allow a more general formulation 

 min (max) cx 

s.t.  (3) 

 bmin  Ax  bmax (two sided constraints) 

 xmin  x  xmax (lower and upper bounds) 

In this form each constraint may be two-sided and decision variables may have non-zero 
lower bounds and upper bounds. Choosing some bmin= bmax yields equality constraints. Upper 
bounds can be disabled by choosing  as upper bound. 

Graphical solution of LP problems 

Small problems with two decision variables can be visualized and solved graphically. Each 
linear inequality constraint divides the plane into two half-planes: the feasible and infeasible 
side. The feasible region is a convex polygon formed as the intersection of these half-planes. 
The objective function is a direction in the plane. The optimum solution is always in some 
corner of this polygon. (In rare cases, two corners may give the same optimal solution. Then 
also all points on their connecting edge are optimal). 

The intersections between constraints are so-called basic solutions of  the  LP  problem  (see  
later). 

Example: Consider the problem 

 min z = -2 x1 - 3 x2 

s.t. 

 3 x1 + 2 x2  24 

 x1 + 2 x2  12 

 x2  4 

 x1  8 

 x1, x2  0 

This problem is illustrated graphically in Figure 1. The feasible region is a convex polygon 
with corners (0,0), (0,4), (4,4), (6,3), and (8,0). The dotted line shows a level where z is 
constant. The minimal feasible solution z = -21 is found by shifting the level line as far to the 
Northeast as possible while still touching the feasible region. As seen in the figure, this 
happens at point (6,3). Similarly, the maximal feasible solution z = 0 is found at (0,0) by 
shifting the line as far to Southwest as possible. 
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Transforming an LP problem into the canonical form 

Prior  to  solving  an  LP  problem  numerically,  it  is  normally  converted  into  a  format,  where  
each constraint is an equality that includes a unique slack variable. This format may either 
contain or not contain upper bounds for variables. The LP solution software will normally do 
this automatically. However, it is useful to understand the transformation because it makes it 
possible to understand the optimization process and results. 

Canonical form with upper bounds 

The following transformations are applied: 

 Inequality constraints Ax  b are converted to equality constraints by adding non-
negative slack variables into Ax + s = b, where s 0. 

 Inequality constraints Ax  b are multiplied by –1 and then converted by adding non-
negative slack variables into –Ax + s = –b, where s 0. 

 The equality constraints Ax = b are augmented with so called artificial variables into 
Ax + s = b, where 0  s  0. 
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 Two-sided constraints bmin  Ax  bmax can be efficiently handled by using a combined 
slack/surplus variable: Ax + s = bmax, where 0  s  bmax-bmin 

After these transformations, the canonical form of  the  LP  problem  with  upper  bounds  is  
obtained: 

 min z = cx 

s.t.  (4) 

 Ax + s = b 

 0  x  xmax 

 0  s  smax 

The x-variables are called structural variables. The s-variables are called slacks for short. 
The only difference between the s-variables and x-variables is that the objective function 
coefficients of s-variables are zeroes and the constraint coefficients of the s-variables form an 
identity matrix. If we do not want to highlight these differences, we can extend the x-vector to 
include the s-variables and augment the c and xmax vectors and the A-matrix correspondingly. 
Then the LP problem can be written as 

 min z = c’x’ 

s.t. 

 A’x’ = b, 

 0  x’  x’max. 

In this form the matrix A’ consists of the original A corresponding to the original x-variables 
and an m m identity matrix I corresponding to the s-variables. Non-zero lower bounds and 
negative variables can be modelled easily through substitution of variables, as described 
earlier. 

For example the canonical form with upper bounds of the sample problem is 

 min z = -2 x1 - 3 x2 

s.t. 

 3 x1 + 2 x2 + s1       = 24 

 x1 + 2 x2        + s2 = 12 

 0  x1  8 

 0  x2  4 

 0  s1, s2   

Canonical form without upper bounds 

The following transformations are applied: 
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 Upper bounds for variables are treated as inequalities. 

 Inequality constraints Ax  b are converted to equality constraints by adding non-
negative slack variables into Ax + s = b, where s 0. 

 Inequality constraints Ax  b are multiplied by –1 and then converted by adding non-
negative slack variables into –Ax + s = –b, where s 0. 

 Equality constraints Ax = b are treated as two separate inequalities Ax  b and Ax  b. 

 Two-sided constraints bmin  Ax  bmax are treated as two separate inequalities. 

After these transformations, the canonical form of the LP problem without upper bounds is 
obtained: 

 min z = cx 

s.t.  (5) 

 Ax + s = b 

 x, s  0 

In the canonical form without upper bounds, the problem is typically larger (has more 
constraints and variables) than in the upper bounds formulation. The previous sample 
problem can be written in canonical format without upper bounds as 

 min z = -2 x1 - 3 x2 

s.t.  

 3 x1 + 2 x2 + s1             = 24 

    x1 + 2 x2      + s2         = 12 

           x2             + s3     = 4 

   x1                         + s4 = 8 

 x1, x2, s1, s2, s3, s4  0 

The Tabular Simplex algorithm 

In the tabular Simplex algorithm, the optimisation problem is organized as a table of numbers 
corresponding to the equality constraints. Equations can, of course, be reordered, multiplied 
by  factors  and  summed  together  without  affecting  their  validity.  The  Simplex  algorithm  
performs such operations in order to transform the equations into a format where the optimal 
solution is obvious. 

Consider  an  LP problem in  the  canonical  format.  Writing  also  the  objective  function  as  an  
equality, yields the form 
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 min z 

s.t.  (6) 

 z - c1x1 - c2x2 - ... - cnxn = 0 

 a11 x1 + a12 x2 + … + a1n xn + s1 = b1 

 a21 x1 + a22 x2 + … + a2n xn + s2 = b2 

  

 am1 x1 + am2 x2 + … + amn xn + sm = bm 

 0  x  xmax 

 0  s  smax 

The Simplex algorithm is based on exploring basic solutions of the problem. A basis is a set 
of linearly independent column vectors that in a linear combination can represent every 
vector. The basic solutions correspond to intersections between constraints in graphical 
representation of the problem. During the Simplex algorithm, exactly m variables  xB are 
basic. The remaining n variables  xN are non-basic. The non-basic variables are set to their 
lower (or upper) bounds. The m basic variables are then solved from the system of m linear 
equalities. 

 

Basis X1 x2 … xn s1 s2 … sm Solution 
z    reduced costs    objective 

          

names of 
basic 

variables    
coefficient 

matrix     
current 
solution 

          

          

The simplex table for performing the necessary computations is organized as follows: 

 To the left of the simplex table is a column showing the names of the variables that 
form the current basis xB. The current basis may contain any selection of m variables 
out of the n x-variables and m s-variables. The order in which the basic variables are 
listed identifies from which equation that variable has been solved. 

 The names of each variable are listed on top of the simplex table. 

 The z-row shows the so-called reduced costs for each variable. 

 The current objective function value appears in the upper right hand corner. 

 Below the reduced costs is the coefficient matrix. 
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 The last column shows the current solution, i.e. the values of the basic variables xB. 

During the algorithm, the simplex table is maintained in a format where the sub-matrix 
corresponding to the basic variables is an identity matrix. 

In the initial simplex table, the basis consists of all the slacks and all x-variables are non-
basic. This is convenient, because the sub-matrix corresponding to the slacks is an identity 
matrix. The non-basic variables are set to zero (their lower bound). The initial solution vector 
xB is then equal to the b-vector. For the moment, we are not concerned about the feasibility of 
the solution. 

Basis x1 x2 … xn s1 s2 … sm Solution 
z -c1 -c2 … -cn 0 0 … 0 0 
s1 a11 a12 … a1n 1 0 … 0 b1 
s2 a21 a22 … a2n 0 1   b2 

          
sm am1 am2 … amn   … 1 bm 

The initial simplex table corresponding previous sample problem in canonical format without 
upper bounds is 

Basis x1 x2 s1 s2 s3 s4 Solution  
z 2 3 0 0 0 0 0  
s1 3 2 1 0 0 0 24  
s2 1 2 0 1 0 0 12  
s3 0 1 0 0 1 0 4  
s4 1 0 0 0 0 1 8  

During each iteration of the Simplex algorithm, we want to enter a new variable to the basis 
and remove an old variable from the basis so that the value of z improves (decreases) and the 
feasibility of all feasible variables is maintained. 

The entering variable is determined by examining the reduced costs of the non-basic 
variables. The reduced cost of a variable represents the net decrease in z when the non-basic 
variable is increased (and the basic variables are adjusted to satisfy the constraints). The 
reduced costs of basic variables are by definition zero. 

For example, in the sample table, increasing the value for x2 by +1 would (in order to 
maintain the equality z-cx=0) decrease z by c2 = 3. Thus, z decreases if the reduced cost for 
the entering variable is positive. When minimizing, the variable with the largest reduced cost 
is typically chosen to enter the basis. When all reduced costs are non-positive, the solution is 
optimal and the algorithm terminates. 

The column corresponding to the entering variable is called the pivot column y and  it  is  
highlighted in the sample table. The pivot column shows what happens to the basic variables 
when the (non-basic) entering variable is moved from its bound. When the entering variable 
increases from its lower bound, a positive y-element indicates that the corresponding basic 
variable decreases (to maintain the equality), a negative element indicates that the basic 
variable increases, and a zero indicates that the basic variable is unaffected. For example in 
the initial table, increasing x2 by  +1  decreases  s1 by  2,  s2 by  2,  and  s3 by  1,  and  leaves  s4 
unaffected. 
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If the variables are bounded only from below, only the positive y-elements corresponding to 
decreasing basic variables are of interest. To protect any basic variable from becoming 
infeasible (negative), the variable that first reaches zero value must leave the basis. This is the 
variable that corresponds to the smallest ratio  = mini xB

i/yi for yi>0 and xB
i 0. Negative xB

i 
indicate infeasible variables. Protecting an already infeasible variable from becoming even 
more infeasible is not a concern at this phase. The smallest ratio  indentifies the pivot row, 
i.e. the equation from which the entering variable must be solved. If no leaving variable is 
found (all y-elements are non-positive), that indicates that the problem is unbounded and the 
algorithm terminates. 

The following table shows the ratios for determining  in the sample problem. The smallest 
ratio is 4 and it appears on the third equation row. Thus, s3 is the variable that must leave the 
basis. 

Basis X1 x2 s1 s2 s3 s4 Solution xB
i/yi 

z 2 3 0 0 0 0 0  
s1 3 2 1 0 0 0 24 12 
s2 1 2 0 1 0 0 12 6 

s3 0 1 0 0 1 0 4 4 
s4 1 0 0 0 0 1 8 - 

After the entering and leaving variables have been determined, the so-called pivot step is 
performed. This step will return the table to a format where the basic variables correspond to 
an identity matrix. This is done by applying the Gauss-Jordan elimination method on the 
simplex table in such a manner that the pivot element at the intersection of the highlighted 
pivot row and column becomes one and the remaining parts of the pivot column become zero. 

The Gauss-Jordan method is applied as follows. The pivot row is divided by the pivot 
element  to  make  the  pivot  element  equal  to  1.  In  the  table  above,  the  pivot  element  was  
already 1 so the division was redundant. The remaining elements yi of the pivot column are 
eliminated through row-operations by subtracting yi times  the  transformed  pivot  row  from  
each row i, including the reduced cost row (row zero). 

The following table shows the necessary Gauss-Jordan elimination operations on our sample 
problem. The last column indicates what row operations have been applied. Each cell shows 
the formula for computing the new value. Observe that the pivot row needs no transformation 
in this case, because the pivot element y3 is already one. Also, the last row needs no 
processing, because y4 is already zero.  Also, because the pivot row contains zeroes on 
columns x1, s1, s2 and s4, no operations on these columns are needed. 

Basis X1 x2 s1 s2 s3 s4 Solution operation 
z 2 3-3 1 0 0 0-3 1 0 0-3 4 -= 3 r 
s1 3 2-2 1 1 0 0-2 1 0 24-2 4 -= 2 r 
s2 1 2-2 1 0 1 0-2 1 0 12-2 4 -= 2 r 
x2 0 1/1 0 0 1/1 0 4/1 /= 1 
s4 1 0 0 0 0 1 8 -= 0 r 

The following table shows the result after the row-operations. The z-value has improved from 
0 to –12. The variable x2 is now in the basis on row 3, which is indicated in the basis-column. 
The reduced cost of x2 is zero and the column of x2 is part of the identity matrix formed by all 
basic variables. To see the identity matrix, the basic columns would have to be sorted into the 
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order specified in the basis column. Finally, observe that the column of s3 that has been 
removed from the basis, is no longer a part of the identity matrix. 

Basis x1 x2 s1 s2 s3 s4 Solution  
z 2 0 0 0 -3 0 -12  
s1 3 0 1 0 -2 0 16  
s2 1 0 0 1 -2 0 4  
x2 0 1 0 0 1 0 4  
s4 1 0 0 0 0 1 8  

This table is not yet optimal, because the reduced cost for x1 is positive. Choosing x1 as the 
entering variable and computing the xB/y ratios identifies row 2 as the pivot row and s2 as the 
leaving variable. 

Basis x1 x2 s1 s2 s3 s4 Solution xB
i/yi 

z 2 0 0 0 -3 0 -12  
s1 3 0 1 0 -2 0 16 5.333 
s2 1 0 0 1 -2 0 4 4 
x2 0 1 0 0 1 0 4 - 
s4 1 0 0 0 0 1 8 8 

The new table after pivoting is still not optimal, because now the reduced cost of s3 is 
positive. This time the pivot row is row 1 with leaving variable s1. 

Basis x1 x2 s1 s2 s3 s4 Solution xB
i/yi 

z 0 0 0 -2 1 0 -20  
s1 0 0 1 -3 4 0 4 1 
x1 1 0 0 1 -2 0 4 - 
x2 0 1 0 0 1 0 4 4 
s4 0 0 0 -1 2 1 4 2 

After the row-operations we obtain an optimal table with z = -21. 

Basis x1 x2 s1 s2 s3 s4 Solution  
z 0 0 -0.25 -1.25 0 0 -21  
s3 0 0 0.25 -0.75 1 0 1  
x1 1 0 0.5 -0.5 0 0 6  
x2 0 1 -0.25 0.75 0 0 3  
s4 0 0 -0.5 0.5 0 1 2  

Shadow prices 

The reduced costs for slack variables in the optimal simplex table are called shadow prices 
for constraints. The shadow price indicates how the objective function changes when the 
right-hand side (resource) of corresponding constraints is modified a little. The shadow price 
is zero for inactive (non-binding) constraints, and non-zero for active (binding) constraints. 

In optimal table of the previous example, constraints 1 and 2 are active, which is reflected by 
negative shadow prices (reduced costs for slack variables s1 and  s2). This indicates that 
reducing the right hand side (resource) of the two first vectors disproves (increases) the 
objective function value, and increasing the resource improves (decreases) the objective 
function value by 0.25 and 1.25 units, correspondingly. The shadow prices for constraints 3 
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and 4 are zero, which means that adjusting their right-hand side does not affect the optimum. 
When using shadow prices for sensitivity analysis, it is necessary to understand that the 
shadow price may be valid only subject to a small (even infinitely small) change in the 
resource. A more robust method for sensitivity analysis is to modify the model parameters 
and re-optimize the model. 

Tabular Simplex with upper bounds 

Upper bounds of structural variables can be handled as separate inequality constraints, as was 
done in the previous example. This, however, increases the size of the problem unnecessarily. 
A much more efficient technique is to handle the upper bounds directly in the algorithm. 

Let us consider a variable with lower bound zero and non-negative upper bound 0 xj xj
max. 

We define a new variable xj* = xj
max-xj. Both variables have the same bounds, but when xj is 

on its upper bound, xj* is zero and when xj is zero, xj*= xj
max. The idea is to substitute xj with 

xj* whenever xj reaches its upper bound, and substitute xj* with xj when xj* reaches its upper 
bound. 

Determining the pivot row is slightly more complicated when upper bounds are present. It is 
necessary to check if some variable reaches its upper bound when the entering variable is 
moved. This is  done by checking the ratios (xB-xB,max

i)/yi also for yi<0. Prior to removing a 
variable from the basis based on the upper bound check, the variable substitution should be 
applied. The third possibility is that the entering variable xj itself reaches its upper bound 
before any basic variable reaches its either bound. To allow the algorithm to work also when 
the current solution is infeasible, the test is omitted for variables that are already on the 
wrong side of their bound. Thus, the maximum step to make is 

 max,

max

max, 0when
00when

/
/

min B
i

B
ii

B
ii

j

i
B
i

B
i

i
B
i

xxy
xy

x
yxx

yx
 (7) 

Consider the sample problem with upper bounds 0 x1 8, and 0 x2 4. The simplex table is 

Basis x1 x2 s1 s2 Solution  
z 2 3 0 0 0  
s1 3 2 1 0 24 12 
s2 1 2 0 1 12 6 

The xB/yi –ratios would allow an increase of 6 in x2. However, in this case the minimum  = 
4 corresponding to the entering variable itself. 

The upper bound substitution can be done very easily on the simplex table. A non-basic 
variable is substituted by subtracting xj

max times the variable column from the solution vector 
and negating then the column. Substituting x2 = 4-x2* in the previous table gives 
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Basis x1 x2* s1 s2 Solution  
z 2 -3 0 0 -12  
s1 3 -2 1 0 16 5.333 
s2 1 -2 0 1 4 4 

Comparing this solution with the previous example after the first iteration we observe that the 
basis is different, but the solution is essentially the same (same values for z, x1, x2, s1 and s2). 
Next we enter x1 and remove s2 from row 2 with minimum  = 4. 

Basis x1 x2* s1 s2 Solution  
z 0 1 0 -2 -20  
s1 0 4 1 -3 4 1 
x1 1 -2 0 1 4 2 

This table is not optimal because the reduced cost of x2* is 1. Because y2 is negative and the 
corresponding basic variable x1 has a finite upper bound of 8, we must compute the ratio as 
(4-8)/-2 = 2. This time the ratio for the first row is smallest. Thus, we enter x2* and remove s1 
from row 1 with minimum  = 1. 

Basis x1 x2* s1 s2 Solution operation 
z 0 0 -0.25 -1.25 -21  

x2* 0 1 0.25 -0.75 1 x2* = 4-x2 
x1 1 0 0.5 -0.5 6  

This table is optimal. To obtain the solution in terms of the original variables, we can 
substitute the x2* with 4-x2. Because x2* is basic, this substitution affects only the x2 row. 

Basis x1 x2 s1 s2 Solution operation 
z 0 0 -0.25 -1.25 -21  
x2 0 -1 0.25 -0.75 -3 *= -1 
x1 1 0 0.5 -0.5 6  

However, negating the column of x2 has made the identity matrix element –1. To restore the 
identity matrix, the row must yet be multiplied by –1. 

Basis x1 x2 s1 s2 Solution  
z 0 0 -0.25 -1.25 -21  
x2 0 1 -0.25 0.75 3  
x1 1 0 0.5 -0.5 6  

This same solution was found in the previous example without the upper bounds technique.  

Handling Infeasibility 

So far, we have assumed that the initial solution to the LP problem is feasible, i.e., all non-
basic variables are within their bounds. This situation is true for example in problems without 
upper bounds, where all constraints are of less or equal type with non-negative b. The 
Simplex algorithm will maintain the feasibility, while improving the objective function. If the 
initial solution is infeasible for some variables, the algorithm will preserve the feasibility of 
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any feasible variables. The algorithm may also accidentally make some or all of the infeasible 
variables feasible, but cannot guarantee that all variable eventually become feasible. 

To guarantee that the algorithm always finds a feasible optimal solution, it is necessary to 
handle the infeasibilities somehow. The so-called two-phase technique is based on first 
solving a related LP problem whose optimal solution provides a feasible solution for the 
original problem. In the second phase, the original problem is solved starting from the found 
feasible solution. If the problem is in the canonical form with upper bounds (4) and we start 
with a slack basis, the infeasibilities are due to some bi<0 or some bi>si

max.  The objective in 
the first phase is then to minimize these infeasibilities: 

 min z’ =
0:: max B

ii
B
i bi isbi i ss   

s.t.  (8) 

 Ax + s = b, 

 0  x  xmax 

 0  s  smax. 

A more efficient single-pass technique is to use an objective function that is a linear 
combination of the original objective function and penalty terms: 

 min (f c+F) x (9) 

Here x is the extended variable vector (including the slacks), f is a non-negative scaling factor 
(typically in the range [0,1], ideal value depends on problem type), and F is a row-vector of 
penalty terms 

 
feasibleiswhen

when
0when

0
1
1

max

j

jj

j

j

x
xx

x
F   (10) 

The objective function is modified during the algorithm. When a variable becomes feasible, 
the corresponding F-coefficient is set to zero. When the overall solution becomes feasible, 
the original objective function is restored by assigning f = 1. If  the algorithm stops with an 
optimal but infeasible solution, this can mean that f is too large. In such cases f is decreased 
or set to zero and the algorithm proceeds. If no feasible solution is found even with zero f, 
this means that the problem is infeasible (has no feasible solutions). 

The penalty method is more efficient than the two-phase method, because it allows advancing 
simultaneously towards a feasible and optimal solution. There are additional benefits with the 
penalty method when solving large or numerically difficult LP problems. Sometimes the 
feasibility of the problem may be lost during the iterations due to numerical inaccuracy in the 
computations. The penalty function can be easily reapplied whenever this happens. 
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The Revised Simplex algorithm 

The tabular Simplex algorithm is suitable only for rather small problems, because the 
complete Simplex table has to be recomputed and maintained during the iterations. Large 
problems are usually solved using the so-called revised Simplex algorithm. During each 
iteration the Simplex algorithm needs only access to one row and two columns of the simplex 
table:  the  z-row,  pivot-column,  and  solution-column.  The  idea  of  revised  Simplex  is  to  
maintain information about the current basis inverse revising (updating) it as the basis 
changes and to compute only necessary parts of the current simplex table.  

We describe a generic variant of the Revised Simplex algorithm, which is commonly used for 
solving large LP problems (Taha, 1982, Flannery et al., 1988, Aittoniemi, 1988). The 
Simplex algorithm improves z iteratively by moving from one basic solution to another. In a 
basic  solution  the  (n-m) non-basic variables are set to their lower or upper bounds and the 
values for the m basic variables are determined so that the constraints are satisfied. A, x and c 
are partitioned as 

 A = B | N ,  x = N

B

x
x

, c = cB | cN , (11) 

where B is the non-singular basis matrix, N is the non-basic matrix, xB is the vector of basic 
variables, xN is the vector of non-basic variables, and cB and cN are the cost coefficients for 
the basic and non-basic variables. The constraints become then 

 BxB + NxN = b. (12) 

To satisfy the constraints, xB is solved in terms of xN: 

  xB = B-1(b -NxN). (13) 

The basic solution is feasible when the basic variables are within their bounds 0 xB xB,max 
(any non-basic variable is by definition on its either bound and therefore feasible). 
Introducing row vector  such that 

  = cBB-1, (14) 

and substituting xB and  into the objective function gives 

 z = cBxB + cNxN = b + (cN - N)xN = b - dxN,  (15) 

where 

 d = N - cN (16) 
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is the row vector of the reduced costs for non-basic variables. The reduced costs indicate how 
z changes when non-basic variables are moved away from their bounds. The solution is 
optimal, if the optimality condition holds: 

dj  0 for all non-basic variables that are at their lower bound, and 
dj  0 for all non-basic variables that are at their upper bound. 

Any non-basic variable that does not satisfy the optimality condition will improve the 
objective function value when entering the basis. Entering the basis means increasing the 
variable from its lower bound or decreasing it from its upper bound. However, this movement 
will affect the values of the basic variables. If the value of a non-basic variable N

jx  is 

changed by N
jx , then, according to (13), the vector of basic variable values changes by 

N
jxy , where we have introduced the so-called pivot column 

 y = B-1 N j. (17) 

The maximum allowed change N
jx for the entering variable must be chosen such that the 

feasibility of all basic variables is maintained, and one of the basic variables reaches its either 
bound, i.e., leaves the basis. This means finding the largest (in magnitude) change N

jx such 
that the following inequalities are still satisfied (and the entering variable itself does not 
exceed it’s bound): 

 max,0 BN
j

B xxyx . (18) 

The following procedure implements the generic Revised Simplex algorithm. 

Algorithm summary: Generic Revised Simplex with upper bounds 

1. Start from some feasible basic solution (11). 

2. Compute the basic variables xB from (13),  from (14), and the reduced costs d from (16). 

3. Find a variable N
jx  to enter the basis so that z improves. For variables at lower bound this 

condition is dj>0, and at upper bound dj<0. If there is no such variable, stop with optimal 

xB. 

4. Compute the pivot column y from (17). 

5. Find the variable to leave the basis so that feasibility is maintained. The leaving variable is 

the one that according to (18) reaches its upper or lower bound first when the entering is 

moved away from its bound. If there is no such variable, stop with an unbounded solution. 
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6. Update the basis and go back to 2. 

Different variants of the Revised Simplex algorithm use different techniques for representing 
and maintaining the basis and/or its inverse. For example, in the Product Form of Inverse 
(PFI) the basis inverse is represented as a product of elimination matrices, and each iteration 
contributes to one additional factor (B-1 = Ek Ek-1 … E1). In the Elimination Form of Inverse 
(EFI) a triangular factorisation of the non-inverted basis is maintained instead (B = LU, 
where L is lower triangular and U is upper triangular). 


