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I. THE JOSEPHSON RELATIONS (REVIEW)

In the previous lecture we derived the two fundamental Josephson relations,

Josephson voltage-phase relation:

dϕ (t)

dt
=

2e

~
V (t) . (1)

The Josephson current-phase relation

IJ = I0 · sinϕ . (2)

II. SQUID DEVICES

The simplest useful device that one can make consists of two Josephson junctions in

parallel, as in Fig. 1. This is called a SQUID (superconducting quantum interference

device).

Consider now the following sample: a single Josephson junction (two electrodes separated

by an insulator) and let us tale two points L and R on the left and right electrodes. In the

theory of superconductivity, when a magnetic field is present, the simple phase difference

across the junction must be replaced by the gauge-invariant phase difference between the

two points L (left) and R (right):

ϕtot = ϕL − ϕR −
2π

Φ0

∫ R

L

~A~dl, (3)

where the flux quantum is

Φ0 =
h

2e
= 2.07× 10−15Tm2. (4)

To understand where this is coming from (and without going into the full theoretical

details) imagine that we would like to write a Schrödinger equation for the superconducting

order parameter (which is the same as a wavefunction, but normalized to some superfluid

density ns(~r, t)),

Ψ(~r, t) =
√
ns(~r, t)e

iθ(~r,t). (5)

The equation satisfied by the order parameter should be like the usual single-particle

Schrödinger equation, but with some mass m and a charge q corresponding to Cooper pairs.
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L R

FIG. 1. Schematic of a dc-SQUID. Figure from Ref. [1].

So

i~
∂

∂t
Ψ(~r, t) =

1

2m

(
−i~~∇− q ~A(~r)

)2

Ψ(~r, t). (6)

This yields a superfluid current (with the replacement q = −2e),

~Js = qRe

[
Ψ∗(~r, t)

(
−i ~
m
~∇− q

m
~A(~r)

)
Ψ(~r, t)

]
(7)

=
~q
m
ns(~r, t)

[
~∇θ(~r, t) +

2π

Φ0

~A(~r)

]
. (8)

Now notice that we have a rather curious situation: neither θ nor ~A are directly experimen-

tally measurable, yet the current is! If we make a change of gauge in ~A, ~A′ = ~A+∇χ (note

that ~B = ~∇× ~A = ~∇× ~A′ = ~B′), the supercurrent can be written as well in the same form

~Js =
~q
m
ns(~r, t)

[
~∇θ′(~r, t) +

2π

Φ0

~A′(~r)

]
. (9)

provided that we redefine θ′ as θ′ = θ − 2π
Φ0
χ. Thus a change of gauge yields a change in

both the vector potential and the phase, such that the supercurrent remains the same. This

means that one can define a gauge-invariant phase as

ϕ(t) = θ +
2π

Φ0

∫
~Ad~l, (10)

which yields Eq. (3) when taken across a junction.

Let us look now at the device shown in Fig. 1 and evaluate the total gauge-invariant

phase difference around the SQUID ring

ϕSQUID = −ϕ1 −
2π

Φ0

∫ R

L

~A1
~dl + ϕ2 −

2π

Φ0

∫ L

R

~A2
~dl (11)

= ϕ2 − ϕ1 +
2π

Φ0

∮
~A~dl (12)

= ϕ2 − ϕ1 +
2πΦ

Φ0

. (13)
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Here by ~A1 and ~A2 we mean the value of ~A evaluated on the SQUID branch containing the

junction 1 and respectively 2.

Now, the total phase should be single valued, that is ϕSQUID = 2π × (integer), that is

ϕ1 − ϕ2 =
2πΦ

Φ0

(mod2π). (14)

The total current through the ring (assuming identical junctions) is

I = I0 sinϕ1 + I0 sin

(
ϕ1 −

2πΦ

Φ0

)
, (15)

therefore the current through the SQUID is

I = 2I0 cos

(
πΦ

Φ0

)
sin

(
ϕ1 −

πΦ

Φ0

)
. (16)

Another, more symmetric form, can be obtained if we define the average phase ϕ =

(ϕ1 + ϕ2)/2,

I = 2I0 cos

(
πΦ

Φ0

)
sinϕ. (17)

This means that the maximum current through the SQUID is 2I0 cos
(
πΦ
Φ0

)
, depending on

the magnetic field. Note that this is an interference effect - as you change the magnetic field,

there are oscillations in the current, from a maximum value 2I0 to destructive interference

(zero current). Therefore by measuring the maximum current through the SQUID we can

find the flux (and knowing the SQUID area, also the field magnetic field B). Also this

relation shows that a SQUID is equivalent to a single junction with EJ tunable by magnetic

field, EJ SQUID(Φ) = 2EJ cos
(
πΦ
Φ0

)
.

III. CLASSICAL THEORY OF JOSEPHSON CIRCUIT ELEMENTS: ENERGIES

AND THE CONSTRUCTION OF THE SYSTEM LAGRANGIAN AND HAMILTO-

NIAN

From now on we will proceed in a systematic way. The aim is to build the Hamiltonian

of a Josephson junction as the basic circuit component. In the process, we will also identify

the canonically conjugate variables of the system.

What we know so far are the two Josephson relations, IJ = I0 sinϕ,

dϕ
dt

= 2e
~ V or V = Φ0

2π
dϕ
dt
.

(18)
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These are the constitutive relations for this effect: this is all about it, once you know them

you should be able to calculate any current, voltage, or superconducting phase in circuits

containing Josephson junctions.

To construct Lagrangians and Hamiltonians we need first to understand the relevant

energies that are associated with these systems.

A. The energy associated with the Josephson effect

This energy is simply

UJ =

∫
IJ · V · dt =

∫
I0 sinϕ

Φ0

2π

dϕ

dt
dt = −EJ cosϕ, (19)

or

UJ (ϕ) = −EJ cosϕ . (20)

Let us look at what this formula tells us. Suppose the phase ϕ = 0, then we have

UJ = −EJ . The meaning of this is as follows: when we connect two superconductors

via a weak link (thus allowing for tunneling) the ground state energy is lowered by EJ with

respect to the uncoupled situation. EJ is here the tunneling energy. This situation is general

whenever you have a tunneling barrier. Now, imagine that we ”twist” the superconducting

phase, thus allowing for a ϕ 6= 0. The potential energy increases with respect to the

”untwisted” (ϕ = 0) case. So a change in phase results in the system accumulating the

energy EJ(1− cosϕ).

B. The capacitive energy

Is this the only energy in the system? Actually not. We have not said anything about

the fact that any two pieces of metal separated by an insulator behave as a capacitor of

capacitance C.
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This capacitor is at a potential V = Φ0

2π
ϕ̇, therefore it has the energy

K (ϕ̇) =
1

2
CV 2 =

1

2

(
Φ0

2π

)2

Cϕ̇2 . (21)

Note the form of this expression and imagine that ϕ is like a coordinate: as will soon

become clear, K is the analog of a kinetic energy, while UJ is the analog of a potential

energy.

C. The Lagrangian

Now we can construct a Lagrangian in the canonical way,

L (ϕ, ϕ̇) = K (ϕ̇)− UJ (ϕ) =
1

2

(
Φ0

2π

)2

Cϕ̇2 + EJ cosϕ. (22)

The Lagrange equations are

d

dt

(
δL
δϕ̇

)
− δL
δϕ

= 0, (23)

i.e.

Φ0

2π
Cϕ̈+ I0 sinϕ = 0. (24)

Note that
Φ0

2π
Cϕ̈ =

d

dt
(CV ) =

dQ

dt
= Icapacitor (25)
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is the current through the capacitor.

�
�
�

���������	
��

����

This means that the Lagrange equations Eq. (23) produce precisely the Kirchoff’s law

for the addition of currents.

D. The Hamiltonian

Next: construct the Hamiltonian

H (p, ϕ) = pϕ̇− L, (26)

with

p =
δL
δϕ̇

=

(
Φ0

2π

)2

Cϕ̇, (27)

as the canonical momentum, associated with the coordinate ϕ (remember that V = Φ0

2π
ϕ̇).

Interpretation: Q = CV is the charge on the capacitor, therefore the canonical momentum

is

p =
Φ0

2π
Q =

~
2e
Q = ~n, (28)

where n is the number of Cooper pairs on the capacitor, which produces a charge Q = (2e)n.

We can also write the Hamiltonian in the alternative forms

H (n, ϕ) = 4ECn
2 − EJ cosϕ, (29)

where 4EC = (2e)2

2C
is charging energy corresponding to a single Cooper pair.

H (Q,ϕ) =
p2

2C
(

Φ0

2π

)2 − EJ cosϕ, (30)

or

H (p, ϕ) =
Q2

2C
− EJ cosϕ . (31)
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What is the closest mechanical analog of this system? It is a pendulum!

�
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In fact, it is called a Josephson pendulum in the literature.

EXERCISE: write down the (classical) Hamilton equations of motion.

IV. SUPERCONDUCTING QUBITS: MOTIVATION

We are searching for a physical realization of the concept of quantum computing based

on Josephson junctions. We would need a system that has two discrete energy states, well-

separated from the rest, so that we can selectively address them by applying a resonant field.

We should be able to prepare the system in any state, let it evolve, then measure it. To

be able to perform 2-qubit gates, we should be able to couple the system with another one

in an externally controllable way. During the quantum gate operations, the system should

not be subject to other uncontrolled influences (decoherence). The measurement apparatus

should interact with the system only during the measurement (and not during the time

when the gates are applied). These are very tough requirements: for example, we want

a system that interacts selectively with its electromagnetic environment: it interacts only

with those degrees of freedom used for producing gates, and very little with the rest of the

electromagnetic degrees of freedom.

It is possible to design circuits made of superconducting components to do exactly this.

The qubits will be called superconducting qubits. But to build a quantum processor, we

would need a few more things. How do we actually measure the state of the qubit? We

will not discuss this here, but rest assured that it is possible. Then, we would need as well

two-qubit gates. That is, we need some way of having the qubits interact for some time and

then be able to decouple them. This is also possible, and the mathematical tools needed to

analyze such a system are similar to the ones introduced in this lecture.
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V. QUANTIZATION OF JOSEPHSON CIRCUIT ELEMENTS

Until now, ϕ and n were classical variables. Let us do something crazy: let’s quantize

them. This means that the phase and number of particles will become operators. We can

write them as ϕ̂ and n̂. Since they are conjugate variables, they satisfy

[ϕ̂, p̂] = i~, (32)

or

[ϕ̂, n̂] = i. (33)

We can even write, by analogy with the “real” coordinate and momentum,

p̂ = −i~ ∂

∂ϕ
, (34)

n̂ = −i ∂
∂ϕ

, (35)

i.e. we are using here the coordinate representation.

Now we have a quantum problem: we have a Hamiltonian

Ĥ = 4EC n̂
2 − EJ cos ϕ̂, (36)

and therefore we can write the corresponding Schrödinger equation

i~
∂

∂t
ψ (ϕ, t) = Ĥψ (ϕ, t) . (37)

The ψ appearing here is simply the wavefunction of a fictional particle with coordinate

ϕ evolving under the Hamiltonian Eq. (36). Its modulus squared value gives the density

probability for the particle to have the phase ϕ as usual in quantum mechanics. Note however

that all the quantities entering the Schrödinger equation refer to a macroscopic system: the

phase φ for example is the superconducting phase associated with the collective motion of

an enormous amount of electrons composing the superconductor. The wavefunction ψ is

sometimes referred to as “macroscopic wavefunction”.

If we now solve for the eigenvalues Ek satisfying

Ĥψk (ϕ, t) = Ekψk (ϕ, t) , (38)
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we find the energy levels E0, E1, E2 . . ..

They look like this
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This is an anharmonic oscillator. Note that the energy levels are not equally separated,

thus we could in principle use only two of them as a qubit. So, we have a qubit, isn’t it so?

Indeed. The only “minor” problem is that we have to manipulate it (i.e. to produce gates).

How do we do it?

VI. STUDY CASE I: THE PHASE QUBIT

We certainly need some externally-controlled parameter or some way of coupling radiation

so that we can excite (controllably) the qubit. How can we do this?

�

���

���

Here is one possibility: we can try to excite the system by using an external current bias I.

The resulting device is called a ”phase qubit”. The real device is a bit more complicated (see

the images at the end of the lecture). This bias current typically has a high-frequency r.f.

component on top of a constant current. When this high-frequency component is resonant
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to the qubit frequency, Rabi oscillations are produced and the qubit can be excited from the

ground state to the first excited state.

�

�
����

Let us see how this will work. The first question is how to include the bias current in

our Hamiltonian description of the circuit. The existence of this current will add another

energy

UI =

∫
(−I)V dt =

∫
−IΦ0

2π

dϕ

dt
dt = −IΦ0

2π
ϕ (39)

(Here I took the current I with a minus sign. It doesn’t matter so much if you put a plus

instead; then you will get the potential below tilted from right to left but nothing significant

will change in the physics.) Then we simply have this additional potential energy in the

Lagrangian,

L(ϕ, ϕ̇) = K(ϕ̇)− UJ(ϕ)− UI(ϕ) (40)

=
1

2

(
Φ0

2π

)2

Cϕ̇2 + EJ cosϕ+
IΦ0

2π
ϕ. (41)

Then, as before, the Lagrange equations

d

dt

(
δL
δϕ̇

)
− δL
δϕ

= 0, (42)
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will yield Kirkhhoff’s current law for electrical circuits,

Φ0

2π
Cϕ̈+ I0 sinϕ = I. (43)

The Hamiltonian is then

H = pϕ̇− L(ϕ, ϕ̇) (44)

=
Q2

2C
− EJ cosϕ− IΦ0

2π
ϕ. (45)

The quantity U(ϕ) = −EJ cosϕ − I
(

Φ0

2π

)
ϕ is the new ”potential energy”. It is also called

the ”washboard potential”, due to its characteristic shape (perhaps many of you have no

idea what is a washboard: if that is the case, ask your grandparents :-) ).

j

)(jU

*
j

0

1

A side note here: the phase variable ϕ behaves like any quantum mechanical variable,

only that it characterizes a macroscopic system (the entire electrical circuit). Looking at the

washboard potential, the “particle” with position ϕ can tunnel from one well to the next

one, a process referred to as macroscopic quantum tunneling. The tunneling probability can

be calculated using the WKB theory. At finite temperature, thermal activation across the

barrier occurs, with probability given by the Arrhenius’ law.

Getting back to our task: as before, Q and Φ0

2π
ϕ are the canonically conjugate variables,

and we can quantize the system,

[
Φ0

2π
ϕ̂, Q̂] = i~. (46)

Or, in terms of the number n of Cooper pairs, Q̂ = (2e)n̂, and [ϕ̂, n̂] = i. Sure enough,

in the ”coordinate” representation (here the ”coordinate” is the phase ϕ) we would write

n̂ = −i d
dϕ

.
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But let us come back to the problem of single gates. Suppose that we bias with a current

I = Iconst + Ix cosωt. We can separate in the Hamiltonian the time-dependent part from the

constant part Ĥconst.,

Ĥconst =
Q̂2

2C
− EJ cos ϕ̂− Iconst

(
Φ0

2π

)
ϕ̂. (47)

We will study first the Hamiltonian Ĥconst, and attempt to solve the Schrödinger equation

for a particle in the washboard potential Uconst(ϕ) = −EJ cosϕ− Iconst

(
Φ0

2π

)
ϕ appearing in

Hconst. If we do not insist of being too precise, the easiest way to do this is to approximate

this potential with a quadratic one by expanding it around the position of a local minimum

ϕ∗, such as

Uconst(ϕ) ≈ Uconst(ϕ
∗) +

1

2

d2Uconst

dϕ2
|ϕ=ϕ∗(ϕ− ϕ∗)2. (48)

We can now simply write the time-independent Schrödinger equation thinking about ϕ as

the ”coordinate”. That is, Q = −i(2e) d
dϕ

and

Ekψk(ϕ) =

[
−(2e)2

2C

d2

dϕ2
− EJ cosϕ− Iconst

(
Φ0

2π

)
ϕ

]
ψk(ϕ), (49)

where k = 0, 1, ..... Let us imagine that we solved this equation and we found the first two

eigenstates ψ0 = 〈ϕ|0〉 and ψ1 = 〈ϕ|1〉 with the eigenvalues E0 and E1 respectively. We can

write

Ĥconst = E0|0〉〈0|+ E1|1〉〈1| =
E0 + E1

2
I +

E1 − E0

2
σz, (50)

where I = |0〉〈0|+ |1〉〈1| and σz = |1〉〈1| − |0〉〈0| is the Z – Pauli matrix.

Now we are ready to solve the full problem, including the time-dependent current. So we

go back to the full Hamiltonian, which we write

Ĥ = Ĥconst − Ix
Φ0

2π
cosωt(ϕ̂− ϕ∗) + ..., (51)

where ... is −IxΦ0

2π
cosωt(ϕ∗) and can be ignored (it does not contain operators ...).

To understand the effect of this oscillatory term, we use first-order perturbation theory.

We have to calculate the matrix elements of the operators ϕ − ϕ∗ in the basis |0〉, |1〉 as

follows:

〈0|ϕ̂− ϕ∗|0〉 = 〈1|ϕ̂− ϕ∗|1〉 = 0 (52)

〈0|ϕ̂− ϕ∗|1〉 = 〈1|ϕ̂− ϕ∗|0〉 = ε, (53)
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therefore ϕ̂−ϕ∗ = ε(|0〉〈1|+ |1〉〈0|) = ε · σ̂x. Eq. (52) above results immediately by noticing

that if the potential is approximated as in Eq. (48) then ϕ∗ is in fact the average of ϕ

on any state. For Eq. (53), we can simply use the results from the harmonic oscillator

and find explicitly the value ε. We will not write the result here because the point is just

to demonstrate that the driving field couples through the σx operator to the qubit. Note

that this ε plays the same role as the electrical dipoles in the standard treatment of atoms

interacting with electromagnetic radiation.

To conclude, we find that

Ĥ =
E1 − E0

2
σ̂z + Ixε

Φ0

2π
σ̂x cosωt, (54)

or, with the notations ν = E1 − E0, ~Ω = Ixε
Φ0

2π
we get

Ĥ =
ν

2
σ̂z + ~Ωσ̂x cosωt. (55)

This is it! Now we have a Hamiltonian that has exactly the same form as Htotal of Eq. (65)

and that can be used to produce Rabi oscillations, single-qubit gates, etc..

VII. STUDY CASE II: THE CHARGE QUBIT (THE COOPER PAIR BOX)

Here is yet another example: the Cooper pair box. Idea: what if, instead of pushing a

current through the junction, we use the charge stored in the capacitance to manipulate the

state of the junction with an external voltage Vg(Vg - gate voltage).

How would the sample look like?
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Equivalent circuit
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We now go through the same procedure:

- find the “kinetic” energy: the electrostatic energy stored in the two capacitors is:

K =
CV 2

2
+
Cg (Vg − V )2

2
, (56)
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where

V =
~
2e
ϕ̇ =

Φ0

2π
ϕ̇. (57)

So,

K (ϕ̇) =
CΣ

2

(
Φ0

2π
ϕ̇− Cg

CΣ

Vg

)2

+
CgV

2
g

2
, (58)

Now
CgV 2

g

2
is constant, let us neglect it. And also we write CΣ = Cg + C.

We then have

L (ϕ, ϕ̇) = K (ϕ̇)− UJ (ϕ) =
CΣ

2

(
Φ0

2π
ϕ̇− Cg

CΣ

Vg

)2

+ EJ cosϕ. (59)

p =
δL
δϕ̇

=
Φ0

2π
CΣ

(
Φ0

2π
ϕ̇− Cg

CΣ

Vg

)
= n~. (60)

Also
Φ0

2π
ϕ̇ =

(2e)n

CΣ

+
Cg
CΣ

Vg. (61)

We now can construct the Hamiltonian,

H (p, ϕ) = pϕ̇− L = (n~)
2π

Φ0

(
(2e)n

CΣ

+
Cg
CΣ

Vg

)
− CΣ

2

(n~)2

C2
Σ

(
2π

Φ0

)2

− EJ cosϕ, (62)

but CΣ

2
(n~)2

C2
Σ

(
2π
Φ0

)2

= (2e)2

2
n2

CΣ
therefore we get

H =
(2e)2

2CΣ

(
n+

CgVg
2e

)2

− EJ cosϕ . (63)

Quantize: again [ϕ̂, n̂] = i and [ϕ̂, p̂] = i~ and in the “coordinate” representation of

p̂ = −i~ ∂
∂ϕ

, n̂ = −i ∂
∂ϕ

.

So:

Ĥ =
(2e)2

2CΣ

(
n̂+

CgVg
2e

)2

− EJ cos ϕ̂. (64)

Then we can use this as before, namely solving Ĥ |ψ〉 = E |ψ〉 etc.

There is one very subtle point though. You might notice that if we attempt to solve

i~ ∂
∂t
|ψ〉 = E |ψ〉 the effect of CgVg

2e
can be eliminated by a gauge transformation |ψ (t)〉 →

e−i
CgVg

2e
ϕ |ψ (t)〉. It looks like nothing except an irrelevant phase will change if we play

externally with Vg! A more careful analysis (that lead to the invention of the so-called
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transmon) shows that this gauge transformation is not possible if one considers the effects

of the boundary conditions ψ(ϕ = 0) = ψ(ϕ = 2π). In this case, driving through the gate

ng is still feasible.

Finally, we should notice that all our calculations above have assumed EC � EJ , in

which case the number of particles can be considered as a continuous variable and we can

write n̂ = −i ∂
∂ϕ

. In this limit, the fluctuation of the number of particles operator are large

compared to 1 (while the fluctutions of the phase are small). The opposite regime exists as

well (called charge regime), where EC � EJ . In this situation we cannot write n̂ = −i ∂
∂ϕ

because the discrete character of n (namely that n is an integer, n = 0, 1, 2 . . .) becomes

important: we cannot treat n as a continuous variable anymore. But this type of sample can

be used as well to define a “charge-qubit”, in which the two qubit states are characterised

by the presence or absence of a single Cooper pair in the Cooper pair box.

VIII. A FEW EXAMPLES OF SUPERCONDUCTING QUBITS REALIZED EX-

PERIMENTALLY

Here we show some examples of superconducting qubits together with their Rabi oscilla-

tions.

Below is a flux qubit and the corresponding Rabi oscillations. This qubit has been

developed at TU Delft.
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Next figure shows the schematic of a charge-phase qubit developed in Saclay (upper

drawing) and the real sample (lower-right). Rabi oscillations are shown in the lower-left

figure. From D. Esteve and D. Vion, arXiv:cond-mat/0505676.
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Finally, a phase qubit. (a) shows the schematic of a phase qubit developed at NIST and

UCSB. The real sample is shown in (b). The lower figure shows the Rabi oscillations. From

J. Martinis: Superconducting Phase Qubits, Quantum Information Processing 8, 81 (2009).
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IX. APPENDIX: RABI OSCILLATIONS

To motivate and understand the use of superconducting circuits based on Josephson

devices as qubits, let us review here the physics of Rabi oscillations. It is important to

understand well this phenomenon, which is relevant for many fields in physics. Let us start

with the generic Hamiltonian:

Ĥtotal =
~ν
2
σ̂z + ~Ω cosωtσ̂x, (65)

where Ω cosωt is an externally controllable classical field.

�

���

���

��

The quantity Ω is called Rabi frequency. Return now to equation (65). Take ν = ω

(resonance) and write

|ψ〉 = a (t) e−i
νt
2 |1〉+ b (t) ei

νt
2 |0〉 , (66)

i~
∂

∂t
|ψ〉 = Htotal |ψ〉 , (67)

⇒

 i~ȧ = ~Ω cos (ωt) eiνtb

i~ḃ = ~Ω cos (ωt) e−iνta
. (68)

But ν = ω and cos (ωt) = 1
2

(eiωt + e−iωt) so
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 iȧ = Ω
2

(1 + e2iωt) b

iḃ = Ω
2

(1 + e−2iωt) a
. (69)

Note now that e2iωt and e−2iωt are fast-oscillation terms. They can be neglected, an

approximation called the Rotating-Wave Approximation (RWA). So we can simply write iȧ ' Ω
2
b

iḃ ' Ω
2
a
. (70)

Let us assume we start in the ground state |0〉. Then a (0) = 0, b (0) = 1, and a (t) =

−i sin Ωt
2

, b (t) = cos Ωt
2

. We then find that after a time t = π
Ω

the qubit is flipped! (from |0〉

to |1〉). Similarly, if we start in |1〉, we discover that after a time t = π
Ω

the qubit goes in

the state |0〉! (up to a phase which we will not discuss here).
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But now notice that this is precisely what X-gates do! Therefore, given an on-resonant

field, applied for a time π
Ω

, we can achieve a flipping of the qubit (in general, rotations

around x) between the states |0〉 and |1〉.

Note that here we considered the qubit as a quantum system but the radiation was treated

classically. It is possible also to treat the radiation quantum-mechanically, by replacing

Ω cos(ωt)σx with ~â†â+ g
2
~(â† + â)σx. This model can also be solved. The Rabi oscillation

occurs in this case at a Rabi frequency Ω =
√
n+ 1g. If n � 1 (classical field) then

Ω =
√
ng, therefore we recover the same result as above, namely that the Rabi frequency

depends linearly on the amplitude of the driving field.
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X. SUPPLEMENTARY MATERIAL (OPTIONAL): THE RF-SQUID QUBIT

Another example: the rf-SQUID qubit. In fact modern-design phase qubits have borrowed

so many features from rf-SQUID qubits that it is sometimes dificult to really distinguish

them. Idea: what if we use an external flux to bias the junction?
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The current through the loop, IL, can be found by writing:

Φ0

2π
ϕ = Φe + IL · L, (71)

where Φ0

2π
ϕ is the change of flux felt by the junction.

So:

IL =
1

L

(
Φ0

2π
ϕ− Φe

)
. (72)

What is the energy associated with IL?

UL =

∫
IL · V · dt =

∫
1

L

(
Φ0

2π
ϕ− Φe

)
· Φ0

2π
ϕ̇ · dt, (73)

or

UL =
1

2L

(
Φ0

2π
ϕ− Φe

)2

. (74)

The “kinetic” (electrostatic) energy is
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K (ϕ̇) =
1

2
CV 2 =

1

2

(
Φ0

2π

)2

Cϕ̇2, (75)

the same as before.

The Josephson energy

UJ (ϕ) = −EJ cosϕ (76)

is also similar.

The Lagrangian can be constructed as

L (ϕ, ϕ̇) = K (ϕ̇)− UJ (ϕ)− UL (ϕ) =
1

2

(
Φ0

2π

)2

Cϕ̇2 +EJ cosϕ− 1

2L

(
Φ0

2π
ϕ− Φe

)2

, (77)

where the canonical momentum is

p =
δL
δϕ̇

=

(
Φ0

2π

)2

Cϕ̇ (78)

- same as before. Again,

p = ~n =
~
2e
Q (79)

⇒

H (p, ϕ) = pϕ̇− L = 4ECn
2 − EJ cosϕ+

1

2L

(
Φ0

2π
ϕ− Φe

)2

(80)

Quantize:

[ϕ̂, n̂] = i, (81)

or

[ϕ̂, p̂] = i.~ (82)

“Coordinate” representation of operators:

p̂ = −i~ ∂

∂ϕ
, (83)

n̂ = −i ∂
∂ϕ

. (84)
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For the Hamiltonian we can write

Ĥ = 4EC n̂
2 − EJ cos ϕ̂+

1

2L

(
Φ0

2π
ϕ̂− Φe

)2

(85)

So now we simply have to solve the Schrödinger equation

i~
∂

∂t
ψ (ϕ, t) = Ĥψ (ϕ, t) , (86)

with

Ĥ = −4EC
∂2

∂ϕ̂2
− U (ϕ̂) , (87)

U (ϕ̂) = −EJ cos ϕ̂+
1

2L

(
Φ0

2π
ϕ̂− Φe

)2

, (88)

Let us plot U (ϕ):

1) if Φe = nΦ0 it looks like this
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2) and if Φe = 2n+1
2

Φ0, now it’s really cool,
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Let us now solve the time-dependent Schrödinger equation

ĤψR (ϕ) = ERψR (ϕ) , (89)

where

ψR (ϕ) = 〈ϕ| R〉 , R ∈ {0, 1} . (90)

Note: in reality, for this type of qubit the “computational basis” is |0〉+|1〉√
2

and |0〉−|1〉√
2

,

i.e. (as if it would have a Hadamard transform applied). The reason is that the states

|0〉+|1〉√
2

and |0〉−|1〉√
2

correspond to counterclockwise 	 and clockwise � currents, which can be

measured easier - they produce fluxes with opposite directions, which can be measured by

an additional device.

How do we produce single-qubit gates in this system?

Consider a small change δΦe around the value 2n+1
2

Φ0. Then Htotal = H + δH, where δH

is due to the corresponding charge in U (ϕ), namely

U (ϕ)→ −EJ cosϕ+
1

2L

(
Φ0

2π
ϕ− 2n+ 1

2
Φ0

)2

+
1

L

(
Φ0

2π
ϕ− 2n+ 1

2
Φ0

)
δΦe +

+
1

2L
(δΦe)

2 (91)

δH =
1

L

(
Φ0

2π
ϕ− 2n+ 1

2
Φ0

)
δΦe (92)
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Here we neglect 1
2L

(δΦe)
2 because δΦe � Φ0.

Let’s express Htotal in the two-state basis |0〉,|1〉. We have:

〈0|Htotal |0〉 = 〈0|H |0〉+ 〈0| δH |0〉 = E0 + δΦe 〈0| (ϕ− (2n+ 1) π) |0〉 Φ0

2πL
' E0, (93)

〈1|Htotal |1〉 = 〈1|H |1〉+ 〈1| δH |1〉 = E1 + δΦe 〈1| (ϕ− (2n+ 1) π) |1〉 Φ0

2πL
' E1, (94)

〈1|Htotal |0〉 = 〈1|H |0〉+ 〈0| δH |1〉 = δΦe 〈0| (ϕ− (2n+ 1) π) |1〉 Φ0

2πL
= ΣδΦe, (95)

〈0|Htotal |1〉 = 〈0|H |1〉+ 〈1| δH |0〉 = ΣδΦe. (96)

Why has the matrix element 〈0| (ϕ− (2n+ 1) π) |0〉 vanished and 〈0| (ϕ− (2n+ 1) π) |1〉

has not? In principle, you can solve numerically the Scrödinger equation and convince

yourself that this is the case.
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But here is a simple argument ψ0 (ϕ) and ψ1 (ϕ) are symmetric and anti-symmetric com-

binations of wavefunctions localized in the left well (call it ψleft (ϕ) ) and right well (call it
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ψright (ϕ) ). As mentioned earlier, these corresponds to counterclockwise 	 and clockwise �

currents in the loop.

ψleft (ϕ) = 〈ϕ| left〉 , (97)

ψright (ϕ) = 〈ϕ| right〉 . (98)

So,

|0〉 ' |left〉+ |right〉√
2

, (99)

|1〉 ' |left〉 − |right〉√
2

. (100)

In the following we neglect the overlap under the barrier

〈left| . . . |right〉 ' 0, (101)

so

〈0| (ϕ̂− (2n+ 1) π) |0〉 ' 1

2
〈left| (ϕ− (2n+ 1) π) |left〉+1

2
〈right| (ϕ− (2n+ 1) π) |right〉 ' 0

(102)

Remember here that (ϕ− (2n+ 1) π) is negative where ψleft (ϕ) 6= 0 and positive ψright (ϕ) 6=

0. The sum is zero simply because ψleft and ψright are symmetric with respect to the axis

ϕ = (2n+ 1) π.

〈0| (ϕ− (2n+ 1) π) |1〉 ' −1

2
〈right| (ϕ− (2n+ 1) π) |right〉+ (103)

1

2
〈left| (ϕ− (2n+ 1) π) |left〉 (104)

= 〈right| (ϕ− (2n+ 1) π) |right〉 6= 0. (105)

Similarly,

〈1| (ϕ− (2n+ 1) π) |1〉 ' 0. (106)

So, we have shown that, in the basis |0〉, |1〉:

Ĥtotal = E0 |0〉 〈0|+ E1 |1〉 〈1|+ ΣδΦe (|1〉 〈0|+ |0〉 〈1|) =

=
E0 + E1

2
Î +

E1 − E0

2
σ̂z + ΣδΦeσ̂x. (107)
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But E0+E1

2
Î is constant, so

Ĥtotal =
E1 − E0

2
σ̂z + ΣδΦeσ̂x (108)

Now we can make rotations around x, by taking δΦe = ~Ω
Σ

cosωt, E1 − E0 = ~ν.
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