
MEC-E1050 Finite Element Method in Solid, week 45/2021

1.  The bar structure shown is loaded by point forces of equal magnitude P.
Determine the nodal displacements 2Xu  and 3Xu . Cross-sectional area A and
Young’s modulus E are constants. Use bar elements as indicated in the figure.

Answer 2 2X
PLu
EA

  , 3 3X
PLu
EA

 

2. _ Determine displacements 2Xu  and 3Xu  of nodes 2 and
3 of the bar shown. The external force per unit length is
constant f  and axial rigidity of the bar is EA . Use two
bar elements of equal length and the bar element
contribution given in the formulae collection.

Answer
2

2
3
2X

f L
EA

u  , 3

2
2X A

f Lu
E



3. The bar structure shown is loaded by a point force at node 1.
Draw the free body diagrams of the three nodes and two bars.
Write down the equilibrium equations of the nodes, force-
displacement relationships of the elements, and constraints on
the displacements imposed by supports. Solve the nodal
displacements from the equation system.

Answer 1 0Xu  , 1Y
FLu
EA

 

4. Consider the torsion bar of the figure loaded by torque M acting on the free
end. Determine the rotation 2X  at the free end if the polar moment of the
cross-section J  and shear modulus G  are constants.

Answer 2X
ML
GJ

  

5. _ Torque M  is acting in the direction of negative X -
axis at node 3 of a torsion bar. Determine rotations

2X  and 3X  of nodes 2 and 3. Shear modulus G  is
constant and the polar moment of area J  is piecewise
constant. Use three elements of equal length.

Answer 2
1
4X

ML
GJ

  , 3
3
4X

ML
GJ

  

X

L

Y
1

2

M

1

1 21 2 3

L L

X

F

X

Y
z

x

xy

y

3

1

2

1

2

L

1

3

  Z

X

1

L
2

2

P

P
x

x



6. Determine rotation of the bending beam shown at node 2,
internal forces and moments acting between the nodes and
the beam element, and the constraint forces at the supports.
The beam is clamped at the left end and simply supported
at the right end. Young’s modulus of the material E  and the
second moment of the cross-section yyI I  are constants.
External distributed force 0zf  .

 Answer 2
1
4Y

ML
EI

  , 1
1

3
2Z

MF
L

  , 1
1

1
2YM M , 1

2
3
2Z

MF
L

 , 1
3
2Z

MF
L

  ,

1
1
2YM M , 2

3
2Z

MF
L

 .

7. External load acting on the beam shown consists of
piecewise constant parts having equal magnitudes but
opposite signs. Determine displacement 2Zu  and rotation

2Y  of the mid-point (point 2). Young’s modulus of the
material and the second moments of area are E and I ,
respectively. Use two beam elements of equal length.

Answer 2 0Zu  , 2

3

48Y
f L

EI
 

8. The boundary value problem defining the element contribution of a torsion bar consist of

2

2 0x
dGJ m
dx

  ]0, [x h ,

1(0) x     and 2( ) xh  ,

1(0) x
dGJ M
dx


  and 2( ) x
dGJ h M
dx


 ,

 in which the shear modulus G, cross-sectional area of the bar A, and external distributed moment
per unit length xm  are constants. Derive the element contribution of a torsion bar element with
the aid of the boundary value problem.

Answer 1 1

2 2

1 1 1
1 1 12

x x x

x x

M m hGJ
M h




      
             
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L X

Z

1
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1
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9. Consider the bar structure of the figure loaded by its own weight.
Determine the displacements 2Xu  and 3Xu  by using two bar elements.
Acceleration by gravity g and material properties E and  are
constants.

Answer
2

2X
g Lu

E


  ,
2

3
3
2X

g Lu
E


 

10. Determine displacement 2Zu  at node 2 of the beam structure shown.
Use two beam elements of equal length. Assume that
rotation 2 0Y  . Point force of magnitude F is acting on
node 2. Young’s modulus of the material E and the second
moment of area I are constants.

Answer
3

2
1
24Z

FLu
EI



F

X

Z

1

21

L L

2

3

3

x
z

x
z

E,A,ρ L

1

3
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X

1
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The bar structure shown is loaded by two point forces of equal magnitude P.
Determine the nodal displacements 2Xu  and 3Xu . Cross-sectional area A and
Young’s modulus E are constants. Use two bar elements as indicated in the
figure.

Solution
The generic force-displacement relationship of a bar element

1 1

2 2

1 1 1
1 1 12

x x x

x x

F u f hEA
F uh

      
             

depends on the cross-sectional area A , Young’s modulus E , bar length h , and force per unit length
of the bar xf  in the direction of the x  axis.

Let us start with the free body diagram of the structure consisting of two bar elements (the structure
is rotated clockwise just to save space).

Element contributions (notice that 0xf   and the force components of the material and structural
systems coincide here) are:

bar 1 :
1

2 2
1 33

0
0

X X

XX

EA EA
F uL L

uEA EAF
L L

                 
        

eq.1

eq.2

bar 2 :
2

1
2 22

0 0
0

X

XX

EA EA
F L L

uEA EAF
L L

                 
        

eq.3

eq.4

Equilibrium equations of the nodes are:

node 1: 2
1 1 0X X XF F F   eq.5

node 2: 2 1
2 2 0X X XF F F P     eq.6
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node 3: 1
3 0X XF F P    eq.7

The outcome is 7 linear equations for the 2 displacements, 4 internal forces, and 1 constraint force.
As the first step toward the solution (always), the internal forces are replaced in eq.6 and eq.7 (non-
constrained nodes) by their expression given by eq.1, eq.2 and eq.4, to get the equilibrium equations
of the nodes in terms of displacements:

node 2: 2 2 3( ) ( ) 0X X X
EA EA EAu u u P
L L L

    

node 3: 2 3( ) 0X X
EA EAu u P
L L

    

After that, the unknown displacements follow from the system of linear equations for node 2 and 3.
In matrix form

2

3

2
0X

X

EA EA
u PL L
uEA EA P

L L

      
      
     

 2

3

2

3

X

X

PL
u EA
u PL

EA

        
   

  

. 

Use the code of MEC-E1050 to check the solution!



Determine displacements 2Xu  and 3Xu  of nodes 2 and 3 of
the bar shown. The external force per unit length is constant
f  and axial rigidity of the bar is EA . Use two bar elements

of equal length and the bar element contribution given in the
formulae collection.

Solution
Only the displacement in the direction of the bar matters. From the figure, the non-zero displacement
components are 2Xu  and 3Xu . Free body diagram of the two bar elements and nodes 1, 2 and 3 is

Element contributions of the bar elements 1 and 2 (formulae collection) and the equilibrium equations
of nodes 1, 2 and 3 are (written in terms of the force and displacement components of the structural
system)

Bar 1:
1

1
1 22

01 1 1
1 1 12

X

XX

F EA f L
uLF

                      
,

Bar 2:
2

2 2
2 33

1 1 1
1 1 12

X X

XX

F uEA f L
uLF

                      
,

Node 1: 1
1 1 0X X xF F F   ,

Node 2: 1 2
2 2 0X X XF F F    ,

Node 3: 2
3 0X XF F   .

Elimination of the internal forces from the two equilibrium equations of the non-constrained nodes 2
and 3 using the element contributions gives

Node 2: 2 2 3( ) ( ) 0
2 2X X X

EA f L EA EA f Lu u u
L L L

      ,

Node 3: 2 3( ) 0
2X X

EA EA f Lu u
L L

     .

When the equilibrium equations are written in the “standard” matrix form

2

3

2 1 1
0

1 1 1/ 2
X

X

uEA f L
uL

     
         

    (
12 1 1 1

1 1 1 2

   
      

 )

1 21 2 3

L L

X

xx

1
1XF 1

2XF 2
2XF 2

3XF

2Xu 3Xu
1 0Xu 

ff
1XF



12 2 2
2

3

2 1 1 1 1 1 3 / 2
1 1 1/ 2 1 2 1/ 2 2

X

X

u f L f L f L
u EA EA EA

           
                      



2

2
3
2X

f Lu
EA

 and
2

3 2X
f Lu
EA

 . 

Use the code of MEC-E1050 to check the solution!



The bar structure shown is loaded by a point force at node 1. Draw
the free body diagrams of the three nodes and two bars. Write down
the equilibrium equations of the nodes, force-displacement
relationships of the elements, and constraints on the displacements
imposed by supports. Solve the nodal displacements from the
equation system.

Solution
The generic force-displacement relationship of a bar element

1 1

2 2

1 1 1
1 1 12

x x x

x x

F u f hEA
F uh

      
             

depends on the cross-sectional area A , Young’s modulus E , bar length h , and force per unit length
of the bar xf  in the direction of the x  axis. In the present case, the distributed force 0xf  .

Let us start with the free body diagram of the structure consisting of two bar elements. A bar takes
only forces acting in its direction. The external point force acts on node 1. Supports are replaced by
reaction forces which they impose on the structure.

Element contributions are written in terms of the force and displacement components in the structural
system. All the components of the elementwise material coordinate systems need to be expressed in
terms of those of the structural system before writing the equilibrium equations. In this case, the
relationships between the material and structural system can easily be seen from the free body
diagram ( 1 1

1 1x XF F , 2 2
1 1x YF F  ,  etc.)

bar 1 :
1

3
1 11

01 1 0
1 1 0

X

XX

F EA
uLF

                      

eq.1

eq.2
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1
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1
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3YF



bar 2 :
2
2

2 11

01 1 0
1 1 0

Y

YY

F EA
uLF

                       

eq.3

eq.4

Force equilibrium equations of the nodes in the X- and Y- directions are:

node 1:
1

1
2
1

0X X

Y Y

F F
F F F

        
     

 ,
eq.5

eq.6

node 2: 2
2
2 2

0X X

Y Y Y

F F
F F F

        
    

 ,
eq.7

eq.8

node 3:
1

3 3

3
0X XX

Y Y

F FF
F F

        
    

 .
eq.9

eq.10

The outcome is a set of 10 linear equations for 2 displacement components, 4 internal force
components, and 4 constraint force components. As the first step toward the solution (always), the
internal forces are replaced in eq.5 and eq.6 (non-constrained directions) by their expression given in
eq.2 and eq.4, to get the equilibrium equations of the nodes in terms of displacements:

node 1:
1

1

1
1

0 0
0

0

X
X X

Y Y
Y

EA EAuF uL L
F uEA EA Fu F

L L

                        
             

 .

After that, the unknown displacements are solved from the system of linear equations

1

1

0
X

Y

u
FLu
EA

       
    

. 

Use the code of MEC-E1050 to check the solution!



Consider the torsion bar of the figure loaded by torque M acting on the free
end. Determine the rotation 2X  at the free end if the polar moment of the
cross-section J  and shear modulus G  are constants.

Solution
Only the rotation in the direction of the bar matters. From the figure, only the
rotation component 2X  may not be zero. Free body diagrams of the torsion bar and nodes 1 and 2
are (the structure is rotated just to save space)

Element contribution of the torsion bar and the equilibrium equations of nodes 1 and 2 are (the
distributed moment vanishes here) written in terms of the rotation and moment components of the
structural system:

Bar 1:
1

1
1 22

01 1
1 1

X

XX

M GJ
LM 

                
,

eq.1

eq.2

Node 1: 1
1 1 0X X XM M M   , eq.3

Node 2: 1
2 0X XM M M    . eq.4

Elimination of the internal forces from the equilibrium eq.4 for node 2 using the element contribution
eq.2 gives

2 0X
GJ M
L
    2X

ML
GJ

   . 

Solution to the unknown rotation was obtained from the equilibrium equation of a non-constrained
node 2. The equilibrium equation of the constrained node 1 contains the constraint moment and is
useful if that is needed too.

1

x

X

L

Y
1

2

M

1



Torque M  is acting in the direction of negative X -axis at
node 3 of a torsion bar. Determine rotations 2X  and 3X
of nodes 2 and 3. Shear modulus G  is constant and the
polar moment of area J  is piecewise constant. Use three
elements of equal length.

Solution
Only the rotation in the direction of the bar matters. From the figure, the non-zero rotation components
are 2X  and 3X . Free body diagrams of the three torsion bar elements and nodes 2 and 3 are (nodes
1 and 4 are constrained and do not contribute to the system equations)

Element contributions of the torsion bar elements 1, 2 and 3 (formulae collection) and the equilibrium
equations of nodes 2 and 3 are (notice that the distributed moment vanishes here)

Bar 1:
1

1
1 22

01 1
1 1

X

XX

M GJ
LM 

                
,

Bar 2:
2

2 2
2 33

1 1
1 12

X X

XX

M GJ
LM




                
,

Bar 3:
3

3 3
3

4

1 1
1 1 0

X X

X

M GJ
LM

                
,

Node 2: 1 2
2 2 0X X XM M M    ,

Node 3: 2 3
3 3 0X X XM M M M     .

Elimination of the internal forces from the two equilibrium equations of the nodes using the element
contributions gives the forms

Node 2: 2 2 3( ) ( ) 0
2 2X X X

GJ GJ GJ
L L L
      ,

Node 3: 2 3 3( ) ( ) 0
2 2X X X
GJ GJ GJ M

L L L
        .

x

1 2

x x

3



Matrix representation of the two equilibrium equations, containing the rotations of nodes 2 and 3 as
unknowns, is

2

3

3 1 0
0

1 3 12
X

X

GJ M
L




     
          

    (
13 1 3 11

1 3 1 38

   
      

)

1
2

3

3 1 0 3 1 0 11 12
1 3 1 1 3 1 34 4

X

X

ML ML ML
GJ GJ GJ




           
                         



2
1
4X

ML
GJ

     and 3
3
4X

ML
GJ

   . 



Determine rotation of the bending beam shown at node 2,
internal forces and moments acting between the nodes and the
beam element, and the constraint forces at the supports. The
beam is clamped at the left end and simply supported at the right
end. Young’s modulus of the material E  and the second
moment of the cross-section yyI I  are constants. External
distributed force 0zf  .

Solution
The generic force-displacement relationship of a bending beam element

1 1
2 21 1

3
2 2

2 22 2

12 6 12 6 6
6 4 6 2
12 6 12 6 612

6 2 6 4

z z

y yyy z

z z

y y

h hF u
M EI h h h h hf h
F h h uh

M hh h h h





        
                          

            

depends on the second moment of area yyI , Young’s modulus E , beam length h , and force per unit
length zf  in the direction of the z  axis. Let us start with the free body diagram of the beam and the
two nodes. As the axis of the material and structural system coincide, the displacement, rotation,
force, and moments components of the two systems are the same

When written in terms of displacement, rotation, force, and moment components in the structural
system, the beam element contribution becomes (as the orientation of the material and structural
coordinate system is the same, the components are the same)

Beam:

1
1

1 2 2
1

31
2

2 21 2
2

12 6 12 6 0 0
06 4 6 2 0
012 6 12 6 0

06 2 6 4

Z

Y

Z
Y

Y

F L L

M h L L LEI
L LLF

L L L LM 

                                     
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eq. 1
eq. 2
eq. 3
eq. 4

Equilibrium equations of the nodes are

Node 1 : 1
1 1 0Z Z ZF F F   eq. 5

1
1 1 0Y Y YM M M   eq. 6

1

M

L X

Z

1

2

xz

1



Node 2 : 1
2 2 0Z Z ZF F F   eq. 7

1
2 0Y YM M M   eq. 8

The outcome is a set of 8 linear equations for 1 rotation, 4 internal forces, and 3 constraint
forces/moments. As the first step toward the solution (always), the internal forces in the node
equilibrium equations are replaced by their expressions given by eq.1, eq.2 , eq.3 and eq.4. After that,
the unknown displacements and rotations follow from the corresponding equilibrium equations. Eq.4
and eq.8 imply first

2
23 4 0Y Y

EIM M L
L

    2
1
4Y

ML
EI

  . 

Use the code of MEC-E1050 to check the solution!  Knowing the rotation angle, the remaining eq.1,
eq.2 , and eq.3 of the beam element contribution give the internal forces

1
1 3

1 36
4 2Z

EI ML MF L
EI LL

    , 

1 2
1 3

1 12
4 2Y

EI MLM L M
EIL

  , 

1
2 3

1 36
4 2Z

EI ML MF L
EI LL

  . 

Constraint forces, due to the clamping at node 1 and simple support at node 2, follow from the
remaining equilibrium eq.5, eq.6, and eq.7 and the solution to the internal forces

1
3 0
2Z Z

MF F
L

    1
3
2Z

MF
L

  , 

1
1 0
2Y YM M M    1

1
2YM M , 

2
3 0
2Z Z

MF F
L

    2
3
2Z
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L

 . 



External load acting on the beam shown consists of piecewise
constant parts having equal magnitudes but opposite signs.
Determine displacement 2Zu  and rotation 2Y  of the mid-
point (point 2). Young’s modulus of the material and the
second moments of area are E and I , respectively. Use two
beam elements of equal length.

Solution
Only the displacement in the Z  direction and rotation in the Y  direction matter in the planar beam
bending problem. From the figure, the non-zero displacement/rotation components are 2Zu  and 2Y
. Free body diagrams of the two bending beam elements and node 2 are (nodes 1 and 3 are constrained)

Element contributions of the two xz plane bending beams (formulae collection) and the equilibrium
equations of node 2 are (notice that the distributed force in the element contribution is the transverse
component in the material system associated with beam)

Beam 1:

1
1

1 2 2
1

31 22
2 21 2

2

12 6 12 6 0 6
06 4 6 2

12 6 12 6 612

6 2 6 4

Z

Y

ZZ
Y

Y

F L L

M L L L L LEI f L
uL LLF

LL L L LM 
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,   ( zf f  )

Beam 2:

2
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2 2 2
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Y Y
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,    ( zf f )

Node 2: 1 2
2 2 0Z ZF F        and 1 2

2 2 0Y YM M   .

Elimination of the internal forces from the two equilibrium equations of node 2 using the element
contributions gives the forms

Node 2: 2 2 2 23 3[ (12 6 ) 6 ] [ (12 6 ) 6 ] 0
12 12Z Y Z Y

EI fL EI fLu L u L
L L

             and

f

X

L L

1 2 31 2
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f

f

1 2

f

x
z

x
z



2 2
2 2 2 23 3[ (6 4 ) ] [ ( 6 4 ) ] 0

12 12Z Y Z Y
EI fL EI fLLu L L Lu L L
L L

         .

Matrix representation of the two equilibrium equations, containing 2Zu  and 2Y  as the unknowns, is

2 2
23
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24 0 0
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1/ 60 8
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The boundary value problem defining the element contribution of a torsion bar consist of

2

2 0x
dGJ m
dx

  ]0, [x h ,

1(0) x     and 2( ) xh  ,

1(0) x
dGJ M
dx


  and 2( ) x
dGJ h M
dx


 ,

in which the shear modulus G, cross-sectional area of the bar A, and external distributed moment per
unit length xm  are constants. Derive the element contribution of a torsion bar element with the aid of
the boundary value problem.

Solution
The equations defining the element contribution of a torsion bar consist of the equilibrium equation,
and boundary conditions for rotations and moments at the nodes. As the number of boundary
conditions is four, existence of the solution is possible only under certain condition on ”data” GJ ,

xm , h , 1x , 2x , 1xM , 2xM . The condition for the data is the torsion bar element contribution.

First, integration of the equilibrium twice is used to find the generic solution (any method to find the
solution goes)

 2 21
2 2

x xam ma bx x x x
bGJ GJ


 

     
 

.

After that, the rotation boundary conditions are used to express the integration constants a and b in
terms of the nodal rotations

1
2

2

0(0) 1 0
( ) 1 2

x x

x

a m
h h b GJ h

 
 

                    
          

 1
2
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001 ( )
1 1 2

x x

x

a h m
b h GJ h



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to get

  1 2
2

2

0011 ( )
1 1 2 2

x x x

x

h m mx x
h GJ GJh





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.

Finally, the moment boundary conditions and the rotation solution give

1 1 2(0) ( )
2
x

x x x
m hd GJM GJ

dx h
       ,

2 2 1( ) ( )
2
x

x x x
m hd GJM GJ h

dx h
     

or in a more concise form

xGJ

h
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Consider the structure of the figure loaded by its own weight. Determine
the displacement 3Xu  of the free end by using bar elements (1) and (2).
The cross-sectional area of the bar (2) is twice that of bar (1).
Acceleration by gravity g and material properties E and  are constants.

Solution
Let the material coordinate systems of both bars coincide with the
structural system. The element and node tables are

According to the recipe for assembly (build of the system equations), element contributions are first
written in terms of the displacement and force components in the structural coordinate system (notice
that gravity is acting in the direction of the negative x-axis):

Bar 1 :
1

2 2
1 33

1 1 1
1 1 12

X X

XX

F uEA gA L
uLF

                      
,

Bar 2 :
2

1
2 22

01 1 12 2
1 1 12

X

XX

F E A gA L
uLF

                      
.

For equilibrium of nodes, sums of the internal forces and moments acting on the nodes need to vanish.
In build of the system equations (minimal equation set) it is enough to consider the non-constrained
directions of displacements at nodes 2 and 3:

1 2
2 2 2

1 33

3 1 3
0

1 1 12
X X X
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F F uEA gA L
uLF
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Determine the displacement 2Zu  at node 2 of the beam structure
shown. Use two beam elements of equal length. Assume that
rotation 2 0Y  . Point force of magnitude F is acting on node
2. Young’s modulus of the material E and the second moment of
area I  are constants.

Solution
In hand calculations, explicit forms of the node and element tables are not needed.  In simple cases,
the relationship between the displacement, rotation, force, and moment components of the material
coordinate and structural coordinate systems can also be deduced from the figure. The beam and point
force element contributions are
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1
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.

Element contributions need to be written in terms of the displacement and rotation components of the
structural coordinate system. The structure has just one-degree of freedom 2Zu .

Beam 1:
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Beam 2:
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,   Force 3:
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.

Assembly means writing the equilibrium equations of the nodes. In practice, the equations giving the
displacements and rotations are obtained by summing the internal forces in directions where
displacement and rotation components are not constrained. If point forces are considered as one node
element, the sum is over the elements connected to a node.
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