2056

5G end-to-end solutions from operation perspective

Internet Forum, Aalto University, 9/11/2021

Dr. Jarno Niemelä, Head of Mobile Access Technology, Elisa Oyj

- 1. Elisa & Finland the land of mobile data
- 2. Elisa 5G path
- 3. 5G as part of whole technology stack
- 4. Automated 5G RAN operations
- 5. Value for customers and Elisa

2

Elisa operates in digitally advanced and attractive markets...

Finland has mobile data usage¹⁾

- FIN 36.2 GB per capita per month
- EU 8.0 GB per capita per month

Mobile broadband widely preferred

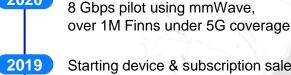
• Exceptionally high share of mobile broadband-only households 36%²⁾

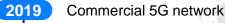
Regulator drives digitalisation and competitiveness

- Early allocation of frequencies
- Proactive dialogue between stakeholders
- Technology-neutral broadband policy

Elisa 5G path

Striking 5G experience by providing...


- High quality & user experience
- Wide selection of terminals and subscriptions
- Extensive coverage
- Cutting edge technologies
- High level of automation



2017

2016

Starting device & subscription sales

End-to-end 5G standalone,

over 3M Finns under 5G coverage

5G standalone connection demo.

- 2018 Opening 5G network opened
 - Starting 5G/3.5GHz tests

135 Cities

Elisa 5G

O DOWNARD

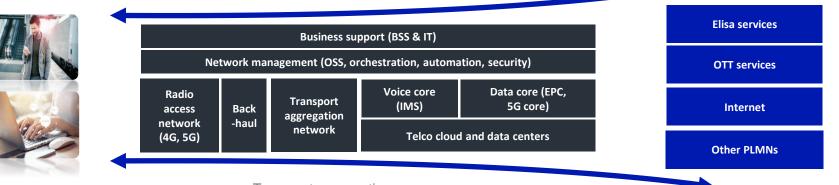
· KENRELL

CALL OF

5G as part of whole technology stack Technological components in 5G networks

Terminals and subscriptions

5G non-standalone (NSA): different terminal types have been available, subscriptions with speedtier based pricing.


Backhaul

Connectivity from radio access sites towards core network based on 10G fibre and microwave solutions. Relays site-based accurate synchronization for 5G time division duplex (TDD). Network management entity deploying different technical functionalities. Separated between different technology domains.

Network management

Business support

Main entities to provide interface between business management and technical functionalities for subscriptions.

Radio access network

5G rollouts ongoing (over 70% population coverage). Main frequencies 3500 MHz together with 4G frequencies. 5G standalone (SA) will be based on using also lower 5G frequencies.

Transport aggregation network

Optical backbone network to connect radio access and core network. Relays site-based synchronization for 5G time division duplex (TDD).

Core network

Central core network that deploys data and voice connectivity together with functionalities required for user session and mobility management. 5G NSA is based on 4G core, 5G SA brings a new core functionalities.

IMS = IP Multimedia Subsystem OSS = Operations support system BSS = Business support system EPC= Evolved packet core (4G) OTT = Over-the-top PLMN = Public land mobile network

5G as part of whole technology stack

Mobile

5G provides way towards service evolution

Technological improvements in SA over NSA seen in customer experience:

- No 4G dependency any more
- Shorter session setup times
 - Shorter session interruption time during handovers
- Enables service evolution

broad- band network	Speeds in DL/UL	Latency	Core Network	Voice	Data	QoS/E	Terminals	Sub- scriptions	Customer benefit
5G NSA	400 Mbps (max 2 Gbps) 30 Mbps (max 200 Mbps)	10-30 ms	4G	VoLTE	5G + 4G with even 3CA*	QCI scheduling based on speed tier. Service differentiation with SPID	All 5G terminals support 5G NSA, and several 4G carrier aggregation combinations	Speed- based tiering (300, 600, 1000 Mbps)	Improved user bitrates and network capacity
5G SA	300 Mbps*** (max 1.5 Gbps) 25 Mbps (max 200 Mbps)	<10-30 ms	5G	VoLTE with EPS fallback (later VoNR)	5G and 700/2100 MHz (2CA**)	Same as in NSA, and native support for RAN-aware slicing	Limited availability of terminals with SA and 5G carrier aggregation capability	Basic 5G SA combined with requirements of new services (use cases)	Same as in NSA, and improved QoS/E depending on new service requirements
5G services network	* Typically 4G includes 800, 1800 and 2100/2600 MHz. ** 5G SA with 700 MHz and/or 2100 MHz, other frequencies allocated to 5G based on 4G traffic.						CA: carrier aggregation VoLTE: voice over LTE VoNR: voice over new radio EPS: Evolved packet core QCI: QoS class identifier HSS: Home subscriber server SDIP: Service profile identifier		

*** End user experience could be improved by allocating higher priority for 5G SA users than 5G NSA users.

QoS/E: Quality of Service / Experience

5G as part of whole technology stack 5G slicing as end-to-end solution

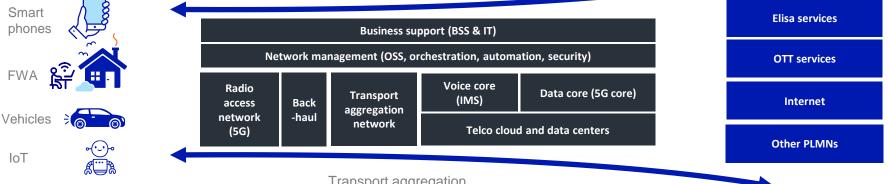
Slicing: technical capability to create **multiple logical** end-to-end networks on a **mobile network** for different use cases which demand **diverse service level requirements**

Terminals and subscriptions

Basic support existing up to 8 slices and needs subscription-based slice provisioning.

7

Backhaul


Per transport path IP addressing, routing, and security with IP QoS mechanisms as VLAN mappings

Network management

Network and slice provisioning and management ability. For end-to-end management, orchestration and automation will have increasing role

Business support

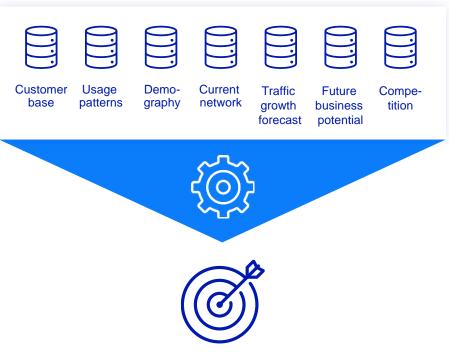
Slice provisioning based on subscriptions. Possibilities to obtain better service level agreements (SLA).

Radio access network

RAN is slice-aware (S-NSSAI) which enables slice-based QoS (5QI, GBR) scheduling. Slice list (NSSAI) based cell selection and mobility together for slice-based optimization.

Transport aggregation network

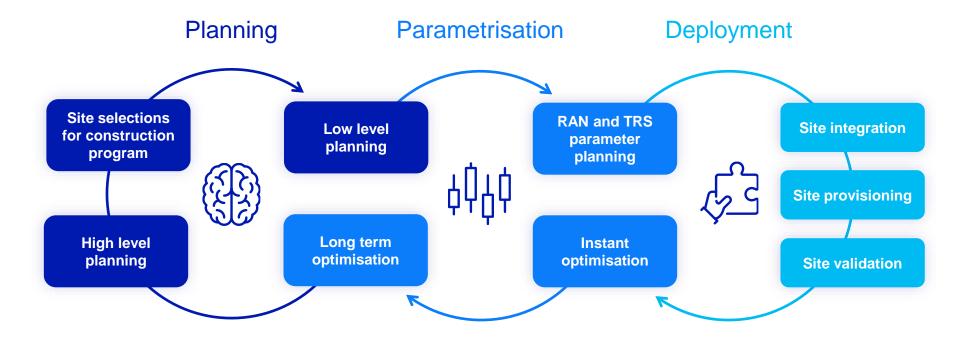
Per transport path IP addressing, routing, and security with IP QoS mechanisms as VLAN mappings


Core network

Key slicing functions supported on the 5G core with static and dynamic mechanisms for slice provisioning and management.

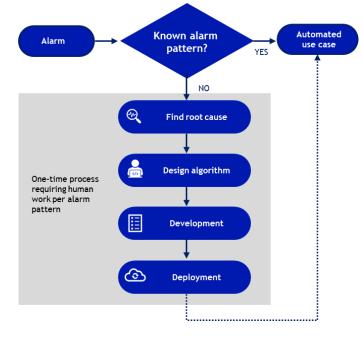
S-NSSAI: Single-network slice selection assistance information 5QI: 5G QoS identifier GBR: Guarantee bit rate DSCP: Differentiated Services Field Codepoint: /LAN: Virtual local area network

Network high level planning based on customer perceived value and data analysis


Network target state based on automatic analysis of massive amount of data that defines high capacity access technology for the whole country

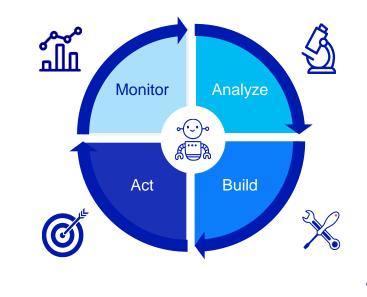
Automated 5G RAN operations

Planning and deployment

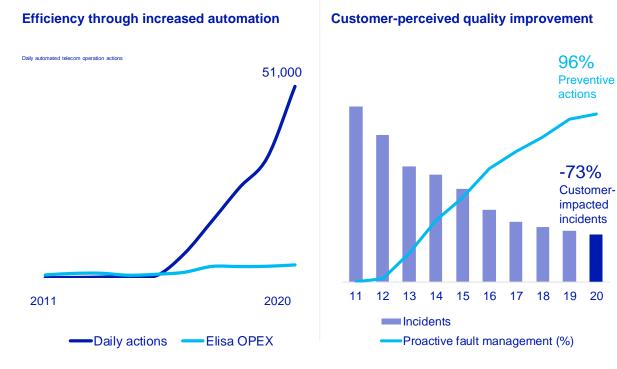


Automated processes as input for each other

Automated operation and optimisation


Automated network operations

- 100 % alarm monitoring automated
- 100 % action ticketing automated
- 90 % of ticket actions automatically resolved



Automated network optimisation with closed-loop optimisation

- · Enable consistent network quality (accessibility)
- Tackle increased network complexity (mobility, load balancing)
- Improve network efficiency (tilting, beamforming, energy saving)

Sustainable improvements in network operations

Results

- Over 40× more data traffic in the mobile network with flat CAPEX% and OPEX¹)
- O critical major faults in Elisa's network since 2016
- 0-persons in network operation centre.
 Focus in automation development and service operations.

We continue to deploy

- Al-driven automated network planning and capacity management
- Zero-touch access network deployment
- Fully software-based IP network and cloud operations

Summary

5G implications seen all over the technology stack.

5G standalone will provide path towards 5G service evolution, but 5G non-standalone will play very crucial role in the future as well.

Slicing provides mechanism for operators to deploy virtual networks and obtain better preconditions for future 5G services and use cases.

Operational complexity can be tackled with automation.

Thank You!