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I. INTRODUCTION

Noise is an ubiquitous phenomenon in electronics, photonics, etc. The readings of a

measuring apparatus will not in general be the same, but fluctuate around a mean value.

Part of this comes from the imperfections of the measuring apparatus itself, and part from

the device itself. These fluctuations will appear no matter how much we try to control

the conditions of the experiment: ultimately, quantum mechanics will prevent us to obtain

precise values of all possible observables due to the uncertainty relations. Another example

is shot noise - to be discussed here - which is due to the randomness of electron or photon

transfer. The effect of noise is typically detrimental to the functioning of a device, hiding

the signal of interest. Therefore the noise needs to be quantitatively characterized, and

parameters such as signal-to-noise ratio are of interest in almost any experiment. To reduce

the noise, one option is to average over as many as possible individual readings, thus getting

rid of the uncorrelated fluctuations. But the noise can also reveal information about new

physics, and learning to extract this information is an additional experimental tool. In the

much-quoted words of Rolf Landauer, “noise is the signal”.

The field starts with the experiments done by Schottky in 1918, with electrons in vacuum

tubes. Schottky realized that there are two types of noise in the vacuum tube, which he

called Wärmeeffekt and Schroteffect. The first one is the thermal (Johnson-Nyquist) noise,

the second became known as the shot noise. The shot noise for the completely uncorrelated

particles is Poissonian, and it is reduced from this value by a number called Fano factor.

Remarkably, as we will discuss, this suppression is in most cases not dependent on the

parameters of the device, but only on the type of transport: for example, the Fano factor

for the barrier junction is 1/2, for a chaotic cavity is 1/4, and for a disordered wire is 1/3.

II. BASIC PROBABILISTIC AND STATISTICS CONCEPTS

In this section we briefly review some elementary concepts from statistics. In typical

mesoscopic problems, we are interested in the number N of electrons transferred trough a

wire, junction, or device in a certain time ∆t. This number N is in general random. Next,

we define:

* the average of these random events: we repeat the experiment many times, sum the
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number of events and divide by the number of repetitions to get the average 〈N〉.

* the distribution of the random events: we count how many times we get exactly N

events and divide by the number of repetitions of the experiment, to get the probability PN ,

normalized to 1,
∑

N PN = 1.

For statistical independent events (say events of type A and events of type B) we can

multiply the probabilities to find the probability of both occurrences: the probability of

having NA counts for the A event and NB counts for the B event is thus

P
(A and B)
N = P

(A)
NA
P

(B)
NB

. (1)

As a result, the probability of having N = NA +NB results is the convolution

P
(A or B)
N =

N∑
NA=0

P
(A)
NA
P

(B)
N−NA . (2)

Quiz: Prove that this probability is normalized,
∑

N P
(A or B)
N = 1.

* the moments of the distribution are the averages of powers of N . The kth moment is

〈Nk〉 =
∑
N

NkPN , (3)

and of course the most used is the mean (average) 〈N〉

〈N〉 =
∑
N

NPN . (4)

* the characteristic function of a probability distribution is

Λ(χ) = 〈eiχN〉 =
∑
N

PNe
iχN . (5)

The characteristic function is the generator of the moments of the distribution. Indeed,

by expanding the exponential we get immediately

Λ(χ) =
∞∑
k=0

(iχ)k

k!
〈Nk〉, (6)

or
dkΛ(χ)

dk(iχ)

∣∣∣∣
χ=0

= 〈Nk〉. (7)
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* the kth order cumulants ck of a distribution are defined thorough the natural logarithm

of the characteristic function: the natural logarithm of the characteristic function is the

generator of the cumulants of the distribution. This means that

ln Λ(χ) =
∞∑
k=0

(iχ)k

k!
ck, (8)

or
dk ln Λ(χ)

dk(iχ)

∣∣∣∣
χ=0

= ck. (9)

The second-order cumulant is the most used, and it is identical with the average of the

fluctuation δN = N − 〈N〉 squared, (which is also called variance)

c2 = 〈(δN)2〉 =
∑
N

N2PN −

(∑
N

NPN

)2

. (10)

Higher-order cumulants are measured and calculated when one is interested in full counting

statistics. The k = 3 cumulant is called skewness and the k = 4 cumulant is called kurtosis .

Exercise: By using a Taylor expansion for the logarithm, show that the second-order

cumulant is indeed identical to 〈(δN)2〉 and that the skewness is the same as 〈(δN)3〉. Does

this correspondence holds for k ≥ 4?

A useful property of the characteristic function is

ln Λ(A or B)(χ) = ln Λ(A)(χ) + ln Λ(B)(χ). (11)

This result is very useful when we have two statistically independent types of events,

because it allows to calculate the resultant characteristic function simply as a product

Λ(A or B)(χ) = Λ(A)(χ)Λ(B)(χ). It also allows us to prove the following: suppose we divide

the time bin ∆t over which we count the events into two time bins ∆t1 and ∆t2. Be-

cause the events in these two time bins are statistically independent, we have ln Λ(χ,∆t) =

ln Λ(χ,∆t1) + ln Λ(χ,∆t2). and ∆t = ∆t1 + ∆t2. Now using Eq. (9) it follows that all the

cumulants are directly proportional with the measurement time ∆t. Of course, the more

you measure, the larger the number of electrons that you will count as say hopping through

a junction or the larger the number of decaying events that your counter will register: there-

fore it is natural that for example 〈N〉 increases. But the result above show that all the

cumulants will grow linearly with the measurement time.
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Examples

1] Uncorrelated transfer of electrons and the Poissonian distribution.

Consider now the case of uncorrelated transfer of electrons in one direction, with transfer

rate Γ. This situation happens in tunnel junctions, where the transmission probabilities are

small and therefore the electrons do not correlate with each other. In a small time interval

dt the probability of transferring one electron is P
(dt)
1 = Γdt, and the probability of not

transfer is P
(dt)
0 = (1− Γdt). Thus the characteristic function is

Λdt(χ) = 〈eiχQ/e〉 =
∑
n=0,1

P (dt)
n eiχn (12)

= (1− Γdt) + (Γdt)eiχ = exp[Γdt(eiχ − 1)]. (13)

Now, as discussed above, since the electrons are uncorrelated, it follows that for a larger

interval ∆t we have

Λ∆t(χ) = exp [Γ∆t(eiχ − 1)]. (14)

To find now PN corresponding to the interval ∆t we take the inverse Fourier transform of

the characteristic function,

PN =

∫ 2π

0

dχ

2π
Λ(χ)e−iNχ = (15)

=

∫ 2π

0

dχ

2π
exp[−iNχ+ Γ∆t(eiχ − 1)] (16)

= e−Γ∆t

∫ 2π

0

dχ

2π
e−iNχ

∞∑
n=0

1

n!
(Γ∆t)neinχ (17)

=
(Γ∆t)N

N !
e−Γ∆t. (18)

This is called the Poissonian distribution. Note that to prove the last equality we used∫ 2π

0

dχ

2π
eiχ(n−N) = δn,N , (19)

with δn,N the Kronecker symbol.

Similarly, you can convince yourself that by starting with the distribution Eq. (18) you

obtain the correct characteristic function,

Λ∆t(χ) =
∞∑
N=0

PNe
iχN (20)
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= e−Γ∆t

∞∑
N=0

(Γ∆teiχ)N

N !
(21)

= e(Γ∆t)[exp(iχ)−1]. (22)

The average number of transferred electrons can be found from this distribution and it

is 〈N〉 = Γ∆t. A property of the Poisson distribution is that the variance equals the mean,

therefore 〈N2〉 − 〈N〉2 = Γ∆t. Higher-order correlations can be calculated as well.

Poissonian current noise power. The current noise of Poissonian processes can be calcu-

lates easily. This is defined (see also next section, where we will do this more general and

systematic) as double the fluctuations of the current I = eN/(∆t),

SP = 2〈(δI)2〉 = 〈
(
eδN

∆t

)2

〉 = 2〈
(
eN

∆t

)2

〉 − 2〈
(
eN

∆t

)
〉2, (23)

and now we know that the mean and variances of the number of electrons in an interval ∆t

are

〈N〉 = Γ∆t, (24)

〈(δN)2〉 = Γ∆t, (25)

So the current and the shot noise is (see also Section 6.1.4. of [1] for an alternative detailed

derivation)

〈I〉 =
e

∆t
〈N〉 = eΓ, (26)

SP =
2e2

∆t
〈(δN)2〉 = 2e2Γ = 2e〈I〉. (27)

2. Transmission with zero fluctuations.

This happens in the case of ideal transmitting channels at zero temperature, where the

wavefunction of the electrons is eipz, with well-defined momentum; thus the current is well-

defined as well. The distribution in this case is PN = δ(N − N̄) and the characteristic

function is Λ(χ) = eiχN̄ .

III. TYPES OF NOISE

The central role in the definition of noise is played by the current-current correlation

function

SI(t, t
′) = 2〈δI(t)δI(t′)〉, (28)
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where δI = I(t) − 〈I(t)〉. This definition refers to classical currents, but it can be ex-

tended for the quantum case by considering the anticommutator {Â, B̂} = ÂB̂ + B̂Â of

the currents (which is symmetric in the current operators, therefore avoids the problem of

noncommutativity of the current operator at different times),

SI(t, t
′) = 〈{δÎ(t)δÎ(t′)}〉, (29)

and similarly δÎ = Î(t) − 〈Î(t)〉. The quantity SI(t, t
′) is called current noise power, and

similar quantities can be defined for the voltage and as combination of current and voltage. In

stationary systems, SI depends only on the difference in time τ = t′−t, ı.e. SI(t, t
′) = SI(τ).

In this case, we can define the Fourier transform SI(ω), called noise power spectral density,

SI(ω) =

∫ ∞
−∞

dτeiωτSI(τ). (30)

Fano factor: To characterize the noisiness of a system we need a benchmark: this

benchmark is the Poissonian process discussed in the beginning. We will soon see that

having sub- or above- Poissonian statistics is indicative of quantum effects. The quantity

that makes this more precise is called the Fano factor F, defines as the ratio between S and

the Poissonian noise SP ,

F =
SI
SP

. (31)

So for every type of noise we can calculate this quantity.

The most usual types of current fluctuations encountered in mesoscopic physics and their

noise power spectral densities are:

• thermal noise: (Nyquist-Johnson noise) : SI(ω ≈ 0) = 4kBT
R

, where R is resistance.

• vacuum noise: SI(ω) = 4~ω
R

, again for a resistance R.

The thermal noise and the vacuum noise can be understood, in the case of linear

systems in equilibrium, as resulting from the fluctuation-dissipation theorem. The

proof is quite involved but can be found in many textbooks. The result is

SI(ω) = 2~ωRe[Y (ω)]

[
coth

(
~ω

2kBT

)
+ 1

]
, (32)

where Y (ω) is the admittance of the sample.
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Thermal noise is obtained when ~|ω| � kBT , in other words the system is at a high

temperature (compared to the frequency). In this case, from Eq. (32) we get

SI(|ω| � kBT/~) = 4kBTRe[Y (ω)]. (33)

If the impedance is a resistor, we get SI = 4kBT/R. Vacuum noise is obtained when

the temperature is small kBT � ~ω. In this case we the noise does not depend on

temperature,

SI(ω � kBT/~) = 4~ωRe[Y (ω)]. (34)

• shot noise: SI(ω ≈ 0) = 2eFI where F is the Fano factor.

• 1/f noise: this is a flicker noise due to coupling of the device to two-level fluctuators,

impurities, or other unknown sources of fluctuation. 1/f noise means that the power

spectrum decreases as a function of frequency, which in practice means that this source

of noise is important at low frequencies, typically below 10 kHz. This source of noise

is important in many devices, including circuits that aim at realizing a quantum pro-

cessor, where it turns out to be an important source of perturbation. To some extend,

this type of noise can be eliminated if the measurement is done fast enough. Although

1/f noise is an important topic, we will not discuss it further in this lecture, since it

requires its own set of theoretical tools.

To understand in a rather general way why noise measurements can provide an impor-

tant diagnosis tool for the physics, consider the classical (Boltzmann) versus the quantum

statistics (Fermi and Bose-Einstein distributions) for systems at equilibrium in the form

〈N〉 =
1

e(E−µ)/kBT + x
, with x =


0 classical particles,

−1 bosons,

1 fermions.

(35)

Using this statistics one gets the fluctuation in the form

〈(δN)2〉 = 〈N〉(1− x〈N〉). (36)

Quiz: Prove this result. Hint: in the grand canonical ensemble, 〈(δN)2〉 = kBT (d〈N〉/dµ)|V,T .

The classical case corresponds to x = 0 and we get the Poissonian result for the fluctua-

tion, 〈(δN)2〉 = 〈N〉. In the case of quantum statistics, we have 〈(δN)2〉 > 〈N〉 for bosons,
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a situation called super-Poissonian or bunching. With fermions, we have 〈(δN)2〉 < 〈N〉,

which is called sub-Poissonian or anti-bunched. Thus, we get the important result that the

noise is indicative of statistics. However, one should be careful to consider, when analyzing a

system, all additional effects and correlations that can change the statistics of fluctuations.

For example, in resonance fluorescence in optics it turns out that the photons are anti-

bunched (the atom cannot emit a photon before absorbing another one, so there is a time

lag that separates the photons); also blockade mechanisms can create bunched fermions.

IV. SCATTERING METHOD APPLIED TO NOISE

The scattering method is a powerful tool to noise calculations. I will present here a sketch

of the main ideas, following [4]. The emphasis is mostly to understanding the final result

and its applications. Additional details about the derivation can be found in the textbooks.

We will use the second-quantization (quantum) version of scattering theory. The current

fluctuation operator is

δÎα(t) = Îα(t)− 〈Îα〉, (37)

and the aim is to calculate

Sαβ(t′ − t) = 〈〈δÎα(t)δÎβ(t′) + δÎβ(t′)δÎα(t)〉, (38)

and we get for the Fourier transform

Sαβ(ω) =

∫ ∞
−∞

dτeiωτSαβ(τ). (39)

Note that in other places Sαβ(t′ − t) is defined with a factor of 1/2 in front (to reflect the

fact that we symmetrized the correlation). We now use the expression for the current in the

scattering formalism, as derived in the lecture on scattering theory,

Îα =
e

h

∑
βγ

∑
m,n

∫
dE

∫
dE ′ei(E−E

′)t/~â†βm(E)Aβγmn(α;E,E ′)âγn(E ′), (40)

where we introduced the notation

Aβγmn(α;E,E ′) = δmnδαβδαγ −
∑
k

(sαβmk)
†(E)sαγkn(E ′). (41)
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At this point we have not separated the spin index: it is easier to do this later, at the end

of the calculation. We now employ Wick’s theorem (written for fermions only - the bosonic

case is similar):

〈â†αk(E1)âβl(E2)â†γm(E3)â†δn(E4)〉 − 〈â†αk(E1)âβl(E2)〉〈â†γm(E3)â†δn(E4)〉 (42)

= δαδδβγδknδmlδ(E1 − E4)δ(E2 − E3)fα(E1)[1− fβ(E2)]. (43)

Using this expression we get

Sαβ(ω) =
e2

h

∑
γδ

∑
mn

∫
dEAγδmn(α;E,E + ~ω)Aδγnm(β;E,E + ~ω)× (44)

×{fγ(E)[1− fδ(E + ~ω)] + [1− fγ(E)]fδ(E + ~ω)} . (45)

The positive- and negative- frequencies are related to each other by Sαβ(ω) = Sβα(−ω).

Next, we focus on the zero-frequency noise, ω = 0,

Sαβ(0) = Sβα(0) =
e2

h

∑
γδ

∑
mn

∫
dEAγδmn(α;E,E)Aδγnm(β;E,E)× (46)

×{fγ(E)[1− fδ(E)] + [1− fγ(E)]fδ(E)} . (47)

We will now consider a two-terminal device, and apply the general result Eq. (47). In

this case, as we discussed in the scattering theory lecture, we have the representation:

b̂L1

...

b̂LNL

b̂R1

...

b̂RNR


= s



âL1

...

âLNL

âR1

...

âRNR


. (48)

A similar expression holds for â† and b̂† but with the matrix s†. The matrix s has dimensions

(NL +NR)× (NL +NR) and it has the representation

s =

 r t′

t r′

 . (49)

The dimensions of the reflection matrix r is (NL × NL), that of r′ is (NR × NR) of t is

(NR×NL), and of t′ is (NL×NR). We now replace the indices α, β with L and R to obtain
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S = SLL = SRR = −SLR = −SRL and

S =
2e2

h

∫
dE
{
Tr[ALL(E)ALL(E)](fL(E)(1− fL(E))+ (50)

+Tr[ARR(E)ARR(E)]fR(E)(1− fR(E)) + (51)

+Tr[ALR(E)ARL(E)][fL(E)(1− fR(E)) + fR(E)(1− fL(E))]
}

(52)

Next, we use the definition Eq. (41) in the expression above. Note also that r†r = I− t†t.

The matrix t†t is then diagonalized (the same procedure as in the lecture on scattering

theory) and the transmission eigenvalues of t†t are denoted, as in the scattering lecture, by

Tn. We find

Tr[r†rt†t] =
∑
n

Tn(1− Tn). (53)

It is now also time to separate the spin from the summation, so from now on we will take

the index n as not including the spin. Because we are left with a single summation, this

means that we just have to add a factor of two in front of the expression of noise. With these,

we can find a reasonably compact formula for the noise derived in the scattering approach

for two terminals,

S = 2
2e2

h

∑
n

∫
dE {Tn(E)[fL(E)(1− fL(E)) + fR(E)(1− fR(E))]+ (54)

+ Tn(E)[1− Tn(E)][fL(E)− fR(E)]2
}
. (55)

If we now assume that the transmission probabilities do not change much with energy around

the Fermi level, that is Tn(E) ≈ Tn(EF ) = Tn, we can integrate [6] over energies and get our

final formula

S = 2
2e2

h

[
2kBT

∑
n

T 2
n + eV coth

(
eV

2kBT

)∑
n

Tn(1− Tn)

]
, (56)

where V is the voltage difference between the L and R leads. As an additional observation,

note that perturbation theory applied to this problem would fail to account for the terms

in T 2
n present in the formula above.

You might wonder how to derive Eq. (56), which is a very compact and elegant result

while the integrals over the Fermi function seem terribly complicated. Integrals of Fermi

functions are called Fermi integrals and some appear quite often in solid-state problems.

You can find a list in Appendix A7 of the textbook [1], and we have also have discussed

some in the Appendix of Lecture 1.
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Here these two integrals are useful:∫ ∞
0

dEfR(1− fL) =
µL − µR
e
µL−µR
kBT − 1

, (57)∫ ∞
0

dE(fL − fR) = µL − µR. (58)

To evaluate the integral over (fL − fR)2 we use the following trick: we write

(fL − fR)2 = −fL(1− fL)− fR(1− fR) + fL(1− fR) + fR(1− fL), (59)

and we use the integrals listed above to find∫ ∞
0

dE(fL − fR)2 = (µL − µR) coth
µL − µR

2kBT
− 2kBT. (60)

You can now use these expressions to obtain indeed Eq. (56).

We can now analyze the two limits of this expression.

A. Thermal noise

The expression for thermal (Johnson-Nyquist) noise can be obtained from Eq. (56) in

the limit eV � kBT ; we find

S = 2
2e2

h
2kBT

∑
n

Tn = 4KBTG, (61)

where G = (2e2/h)
∑

n Tn is the Büttiker conductivity derived previously. Thus, thermal

noise is related to conductance (a consequence, as mentioned above, of the fluctuation-

dissipation theorem) and as a result we cannot find any new information from the noise

(more than from just conductance measurements).

• To understand a bit better how this came about, we can look one step back in Eq.

(55). If the system is in thermal equilibrium, then fR = fL = f and only the first term in

that equation survives. We can use the relation

f(1− f) = kBT

(
− ∂f
∂E

)
. (62)

Recall now that we proved the Landauer formula for the conductance in the form

G = 2
e2

h

∑
n

∫
dETn(E)

(
−∂f(E − µ)

∂E

)
. (63)

Inserting these expressions in Eq. (55), we get

S = 4kBTG, (64)

which is the Nyquist-Johnson noise.
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B. Shot noise

We now look at the zero-temperature case and a finite voltage bias V applied to the leads

µL − µR = eV . From Eq. (56) we have

S = 2
2e3V

h

∑
n

Tn(1− Tn), (65)

which is a rather general formula for the shot noise.

• We can also look back in Eq. (55) to understand where this comes from. At T = 0 the

product f(1− f) vanishes and we are left with

S = 2
e2

h

∑
n

∫ µR

µL

dETn(E)[1− Tn(E)]. (66)

If we now assume that the tunnel probabilities are constant and with µR − µL = eV we get

indeed

S = 2
2e3V

h

∑
n

Tn(1− Tn), (67)

Poissonian limit

In the limit Tn � 1 we can recover our previous result Eq. (70) for the Poissonian current

fluctuations. Indeed, Eq. (65) in the limit Tn � 1 yields

SP = 2
2e3V

h

∑
n

Tn = 2eGV = 2e〈I〉, (68)

where we used the Landauer-Büttiker result G = 2(e2/h)
∑

n Tn. which is the same as

〈I〉 =
e

∆t
〈N〉 = eΓ, (69)

SP =
2e

∆t
〈(δN)2〉 = 2e2Γ = 2e〈I〉. (70)

Fano factor

We have defined the Fano factor as

F =
S

2e〈I〉
, (71)

so we can immediately calculate it with the equations above.

Alternative forms of this formula can be obtained by recall again the Landauer conduc-

tance formula G = 2(e2/h)
∑

n Tn and 〈I〉 = GV . This results in the following expression

for the Fano factor, which is often encountered in the literature,

F =

∑
n Tn(1− Tn)∑

n Tn
. (72)
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The factor (1− Tn), which appears in each channel, always reduces the overall noise. Thus

F ≤ 1 (sub-Poissonian noise), as expected for noninteracting electrons.

V. EXAMPLES

The results obtained above are general, valid for conductors and elastic scattering. Now

for any system, once we know the transmission probabilities Tn, we can calculate the Fano

factor.

A. Single tunnel junction

In the case of the tunnel junction, the transmission probability is small, Tn � 1. In this

case we get directly from Eq. (56) that the noise is

S = 2
2e3V

h
coth

(
eV

2kBT

)∑
n

Tn = coth

(
eV

2kBT

)
SP . (73)

where for the last equality we used G = 2e2/h
∑

n Tn and 〈I〉 = GV . This illustrates

in a compact form the cross-over between thermal noise (kBT � e|V |) and shot noise

(kBT � e|V |). This crossover has been demonstrated experimentally, for example using

STMs [7], see Fig. (V A).

B. Quantum point contact

The quantum point contact is defined by a saddle constriction of the type

V (x, y) = V0 −
1

2
mω2

xx
2 +

1

2
mω2

yy
2, (74)

for which the transmission probability (Büttiker) can be obtained for which the transmission

probability can be obtained

Tn(E) =
1

1 + e−2π(E−εn)/~ωx
. (75)

where

εn =

[
~ωy

(
n+

1

2

)
+ V0

]
. (76)
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FIG. 1. Crossover between thermal and shot noise in an STM experiment. The solid lines are the

prediction of Eq. (73). a) corresponds to T = 300 K and b) corresponds to T = 77 K. Figure from

Ref. [7].

This expression for the transmission can be substituted into Eq. (66), and therefore for

E = EF we can calculate the noise as a function of the difference EF − V0 (which is set

experimentally by the gate voltage, which controls the number of conducting channels see

Fig. V B). The result is that the shot noise has a strong peak at each conductance step.

This has also been confirmed experimentally.

C. Diffusive wires

The result is F = 1
3
. This comes from the following considerations: for these wires the

transmission distribution ρD (the number of channels that have a given transmission T ) is

known,

ρD =
〈G〉
2GQ

1

T
√

1− T
, (77)

where GQ = 2e2

h
is the quanta of conductance. For example, the total number of channels

is
∫ 1

0
dTρD. To convince yourself that this distribution is consistent with the Landauer

formula, calculate

〈G〉 = GQ

∫ 1

0

dTρDT. (78)
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FIG. 2. Normalized conductivity and noise spectral density for a point contact versus the gate

voltage VG. Figure from Ref. [8].

The Fano factor is obtained from the formula Eq. (72),

F =

∫ 1

0
dTρDT (1− T )∫ 1

0
dTρDT

=
1

3
. (79)

where the integrals can be calculated by a simple substitution x =
√

1− T .

D. Chaotic cavities

Chaotic cavities are ballistic systems with irregular shape and with scattering only at the

surface. They are connected to the leads by small point contacts that result in a number

NL and NR of open channels at the left and the right lead. The noise for chaotic cavities

can be calculated and the Fano factor turns out to be

F =
NLNR

NL +NR

. (80)

VI. HOW TO MEASURE NOISE

The simplest setup to measure would use a cold amplifier and a room-temperature am-

plifier; at the end of the measurement chain, the detector is a nonlinear element (to provide

a reading of (δI)2), which is recorded in a computer. The whole measurement chain needs
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FIG. 3. In this setup, the current is modulated at a low frequency f < 1kHz and the amplified

excess noise, synchronous with f , is measured using a lock-in technique. The modulation and

lock-in detection improve the signal-to-noise ratio. The current and its high-frequency fluctuations

are amplified in the band 8 − 18 GHz and detected by a high-frequency diode which provides an

output Vout(f) ≈ 〈(δI)2〉10GHz. Figure from Ref. [8].

to be carefully calibrated with a known sample (e.g. a resistor). For example, in Fig. VI

we present the measurement setup used for taking the data from Fig. V B.
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[3–5].
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I. INTRODUCTION

This lecture introduces a number of essential concepts in quantum transport, related

to the scattering formalism and the so-called Landauer-Büttiker approach. This is a very

versatile approach with countless applications in transport phenomena in solids. It does not

include inelastic effects, but it does include (unlike the Bolzmann approach) interference

effects. The main assumption in the theory is that the system (a wire for example) is

connected to large reservoirs. All the inelastic processes happen in the reservoir, while in

the wire the electrons flow unimpeded (ballistically). In this way, the problem is reduced to

a standard quantum-mechanical scattering problem.

To motivate the discussion and set the problem, let us look at how we describe in elec-

tronics the flow of a current through an ohmic conductor of resistance R when a voltage

V is applied. We write for the current the Ohm’s law I = RV , without worrying about

the microscopic description of the electrons’ flow in the conductor. We then calculate the

resistance as R = ρL/S, where ρ is the resistivity, L the length, and S the transversal area.

If we now make S → 0, we formally get R→∞: - this would imply that narrowing down the

transversal area S of a conductor, the conductance goes smoothly to zero. In reality, this is

not what is seen in experiments: the conductance decreases in steps, which are quantized in

units of a quantum of conductance GQ = 2e2/h. The quantity GK = e2/h = 3.8× 10−5Ω−1,

which is half the quantum of conductance, and corresponds to a resistance RK = G−1K = 25.8

kΩ is also important in the integer quantum Hall effect, where the transversal conductance

of a Hall sample has plateaus at integer multiples of GK . The subscript K comes from the

name of Klaus von Klitzing.

The essential concepts to be introduced in this lecture are:

• Transmission probabilities, denoted by T . The reflection is R = 1− T . These proba-

bilities are quantum-mechanical, thus they originate from a transmission amplitude t,

with T = tt∗ = |t|2, and a reflection amplitude r, with R = rr∗ = |r|2.

• Ballistic conductors and channels: the transport occurs with transmission probability

close to 1 - there is no scattering.

• Transversal modes.

• Scattering matrices.
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• The Landauer-Büttiker formulation of transport.

II. TRANSVERSE MODES

We will model the wire conductors as waveguides with a finite width and thickness (x

and y-directions) and an infinite length in the z-direction. We write the time-independent

Schrödinger equation for the electrons in the wire as[
− ~2

2m
∇2 + U(x, y, z)

]
ψ(x, y, z) = Eψ(x, y, z). (1)

Let us try to simplify the problem: the simplest and most natural approximation is to take

the potential U(x, y, z) independent of the coordinate z (to avoid backscattering). This

allows us to use the method of separation of variables to search for a solution in the form

ψ(x, y, z) = χ(x, y)eikzz, (2)

which yields [
− ~2

2m
(∂2x + ∂2y) + U(x, y)

]
χ(x, y) = εχn(x, y). (3)

Next, we should specify the lateral boundary conditions. Since there usually a work potential

of a few eV is required to extract electrons out of the metal, we can use the rectangular box

model potential - the electrons are confined laterally and their wavefunction vanishes at the

edge,

χ(0, y) = χ(Lx, y) = χ(x, 0) = χ(x, Ly) = 0, (4)

with Lx and Ly the transversal dimensions of the wire. We then get for the eigenfunctions

χn(x, y) = An sin(knxx) sin(knyy), (5)

with knx = nxπ/Lx, ky = nyπ/Ly, and n = (nx, ny) the mode index of the transversal

wavefunction, corresponding to a transverse-mode eigenenergy

εn =
~2

2m
(k2nx + k2ny). (6)

We can then write

E = εn +
~2k2z
2m

. (7)
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Conversely, suppose you are interested in what happens with particles with a given en-

ergy E. Then the corresponding wavenumbers will depend on which transversal mode the

particles occupy,

k(n)z = ±
√

2m

~2
(E − εn). (8)

The group velocity in the z-direction is by definition

v(n)z =
1

~
dE

dk
(n)
z

=
~k(n)z

m
. (9)

Note that only states with E ≥ εn carry current, in other words k
(n)
z must be real (evanescent

waves with imaginary kz do not carry current). For example, if we have a reservoir with a

certain Fermi energy, only the transverse modes with transverse energy εn below the Fermi

level can carry current. It is also convenient to define a function M(E) which counts the

number of modes with energy εn below E,

M(E) =
∑
n

θ(E − εn), (10)

where the function θ is the Heaviside step function (0 for negative values of the argument

and 1 for positive values).

III. TRANSMISSION AND REFLECTION PROBABILITIES

To get an idea on how electrons scatter on potentials, let us calculate the probability of

reflection and transmission for a standard rectangular potential as in Fig. (1)a,

U(z) =

 U0, if 0 < z < d

0, otherwise.
(11)

For a given energy E we have waves propagating to the right or to the left, with k
(n)
z =

±
√

2m
~2 (E − εn). Therefore

ψ(x) =


eikzz + r−ikzz if z < 0,

beiκz + ce−iκz if 0 < z < 0,

teikzz if d < z

(12)

where under the barrier the momentum vector is given by κ =
√

2m
~2 (E − εn − U0). Note that

if E < εn+U0 then κ is imaginary (evanescent wavefunctions), and T (E) can still be non-zero.
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FIG. 1: a) Schematic of the barrier potential. b) T (E) for d
√
2mU0/~2 taking the value 3 (solid

line) and 5 (dashed line). Figure from Ref. [2].

Transport happens in this situation by tunneling. From the continuity conditions (for the

wavefunction and its first derivative) one can obtain, after some tedious but straightforward

calculation,

T (E) = |t|2 =
4κ2k2

(k2 − κ2) sin2(κd) + 4κ2k2
, (13)

and R(E) = 1− T (E). The transmission coefficient is plotted in Fig. (1)b.

Exercise: Show that if the energy E is well below the barrier, T (E) becomes exponen-

tially small in the width of the barrier. Discuss the connection with the WKB approximation.

IV. THE SCATTERING MATRIX

The scattering matrix offers a very compact form for calculating the transport properties,

especially in the case of multiterminal devices. There are many reasons why this formal-

ism is essential in nanoelectronics. The present nanotechnology techniques cannot produce

perfectly identical structures; since these are nanoscale devices, changes and errors at the

scale of a few atomic layers cannot be neglected as in the case of larger structures. Defects

produce disorder and these are inevitably part of the device. Electrons scatter from these

defects, and as a result the conductance depends on the exact distribution of disorder in the

sample. It would be a tremendously difficult task to model all these effects.

However, if the scattering of electrons is lossless, it is possible to characterize the transport

by a relatively small number of parameters. The idea is to identify several regions in the

sample:
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FIG. 2: Scattering approach to transport. A quantum point contact is modeled as a scattering

region connected by waveguides to two reservoirs. Figure from Ref. [2].

(1) The reservoirs The reservoirs are assumed to be in thermal equilibrium and kept at

a fixed voltage. We will call them “‘left”(L) and “right” (R). The formalism can be easily

generalized to several reservoirs.

(2) The scattering region This is the region where the “active” part of the nanostructure

is placed.

(3) The waveguides These are the regions connecting the scattering region to the reser-

voirs.

In the waveguides, the wavefunction is a combination of plane waves, moving either in

the positive-z direction or in the negative-z direction. We can write

ψ(xL, yL, zL) =
∑
n

1√
2π~vn

χn(xL, yL)
[
aLne

ik
(n)
z zL + bLne

−ik(n)z zL
]
, (14)

ψ(xR, yR, zR) =
∑
m

1√
2π~vm

χm(xR, yR)
[
aRme

−ik(m)
z zR + bRme

ik
(m)
z zR

]
. (15)

where n and m refers to the left- and respectively right- wavefunctions and

k(n)z = ±
√

2m

~2
(E − εn); (16)

k(m)
z = ±

√
2m

~2
(E − εm), (17)

both real numbers (propagating not evanescent waves) corresponding to the same energy E.

This condition limits the number of channels in the left- and right- waveguides to NL and

NR (which are the maximum n and m such that k
(n)
z , k

(n)
z are real).
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Exercise: Note the normalization of these wavefunctions and calculate the corresponding

particle current densities.

Clearly aLn , aRm are the amplitudes of the waves coming directly from the reservoirs and bLn ,

bRm are the amplitudes of the waves that interact with the scattering region. The scattering

matrix connects these amplitudes,

bαl =
∑
β=L,R

∑
p

sαβlp a
β
p , β = L,R, l = n,m, (18)

or explicitly

bαl =
∑
p

sαLlp a
L
p +

∑
p

sαRlp a
R
p , l = n,m. (19)

The scattering matrix ŝ is simply a compact form for the coefficients sαβlp ,

ŝ =

 ŝLL ŝLR

ŝRL ŝRR

 ∼
 r̂ t̂′

t̂ r̂′

 . (20)

The last equality defines four matrices. The NL × NL reflection matrix r̂ describes the

reflection of the waves from the left, while the NR × NR reflection matrix r̂′ describes the

reflection of the waves coming from the right. Similarly, the NR × NL matrix t̂ and the

NL ×NR matrix t̂′ describe the transmission through the structure.

Properties of the scattering matrix

a) Time-reversal symmetry. In the absence of a magnetic field we have time-reversal

symmetry. This implies ŝT = ŝ (T is transpose), and further t̂′ = t̂ (or tmn = t′nm) as well as

the symmetry of the reflection matrices, rnn′ = rn′n and r′mm′ = r′m′m.

Exercise Write down the corresponding relations in the presence of a magnetic field B.

b) Unitarity. This is a consequence of conservation of the incoming and outgoing

current.

We have ŝ†ŝ = ŝŝ† = Î. If we look at the diagonal elements,

(ŝ†ŝ)nn =
∑
n′

|rnn′ |2 +
∑
m

|tmn|2 = 1. (21)

Note now that

Rn =
∑
n′

|rnn′ |2 (22)
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FIG. 3: The elements of the scattering matrix for n′ = 2. Figure from Ref. [2].

is the probability for an electron in channel n to be reflected. The transmission probability

is

Tn =
∑
m

|tmn|2 = (t̂†t̂)nn = 1−Rn. (23)

Fig. (3) shows the matrix elements rn2 and tm2 for one left and one right lead.

V. THE LANDAUER-BÜTTIKER FORMALISM

A. Introduction

Let us now introduce the main idea by doing a very instructive calculation. The current

that propagates in a wire of length L can be calculated by calculating the charge that

passes through a surface in the x − y plane per unit time, that is 2ev
(n)
z /L, where n is the

transversal mode. In other words, if we take into account only the states near the Fermi

level (sometimes referred to as transport at the Fermi edge) the current can be calculated

by taking two electrons (to include the spin degeneracy) per kz-state and by summing over

all modes near the Fermi level,

I(n) = 2× e

L

∑
n

v(n)z = 2× e

L
×
∫

dkz
2π/L

1

~
dE

dkz
=

2e

2π~

∫ EF+eV

EF

dE
dE/dkz
dE/dkz

=
2e2

h
V, (24)

where V is a bias voltage producing a displacement of the Fermi energy by eV . We used

here the definition of v
(n)
z from Eq. (9) and the relation dkz = (dkz/dE)dE.

This result is remarkably simple and beautiful. It shows that the conductance per longi-

tudinal mode (channel) is simply

GQ =
2e2

h
. (25)
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If there are M channels open, the conductance will be G = 2e2M
h

. This is surprising: note

that the result does not depend on the length of the wire, unlike what you would expect

from the resistance formula R = ρL/S.

We then move one step further to introduce the effect of the reservoirs and their filling

factors. Consider now a cross-section though the left waveguide (see Fig. 2). The total

current is a sum of three contributions: 1) electrons coming directly from the left reservoir

(kz > 0, filling factor fL) moving to the right with speed vz; 2) electrons that originate from

the left reservoir and are reflected with probability Rn(E) =
∑

n′ |rn,n′ |2. These electrons

carry a filling factor fL(E) and kz < 0. 3) electrons coming from the right reservoir (filling

factor fR(E) and kz < 0 ) which are transmitted through the scattering region (probability

1 − Rn(E)). So we just sum up these three contributions, again with a factor of 2 due to

spin degeneracy,

I = 2×e
∑
n

{∫ ∞
0

dkz
2π

vz(kz)fL(E) +

∫ 0

−∞

dkz
2π

vz(kz)Rn(E)fL(E) +

∫ 0

−∞

dkz
2π

vz(kz)(1−Rn(E))fR(E)

}
(26)

Then, we change the variables kz → −kz (note that vz(−kz) = −vz(kz)) in order to get the

same limits of the integral. Finally,

I = 2× e
∑
n

∫ ∞
0

dkz
2π

vz(kz) (1−Rn(E)) [fL(E)− fR(E)] . (27)

We now use the same trick as before: the magic of the density of states in 1-dimension which

cancels up to a ~ the inverse of the velocity vz(kz) works here as well,

I = 2× e

h

∑
n

∫ ∞
0

dE(1−Rn(E)) [fL(E)− fR(E)] . (28)

We then use the unitarity of the scattering matrix, which yields

1−Rn =
∑
m

|tmn|2 = (t†t)nn, (29)

therefore we can use the trace

Tr
[
t†t
]

=
∑
n

(t†t)n, (30)

to write

I =
2e

h

∫ ∞
0

dETr
[
t†t
]

[fL(E)− fR(E)]. (31)
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FIG. 4: Two-probe (two-terminal) scattering: the diagram shows the left and right reservoirs, the

sample, and the left and right leads. Figure from Ref. [3].

This is our final result, called the Landauer formula. This formula allows us to calculate the

conductance for many ballistic problems - from wires to graphene.

Exercise: Consider a zero-temperature Fermi distribution function for the two reservoirs,

fL(E) = θ(µL−E) and fR(E) = θ(µR−E), where the difference in the chemical potentials

is established by a bias voltage, µR − µL = eV . Calculate I using Eq. (31) and compare

with the previous result Ref. (24).

B. Development of the formalism: second quantization

We now start to develop in a more rigurous way the Landauer-Büttiker formalism as a

full quantum-mechanical theory of scattering. This can be done for an arbitrary number

of leads, but most of the results presented here will aim at understanding the two-terminal

problem (see Fig. V B). Generalizations to multiple terminals are relatively straightforward.

Wavefunctions in the scattering approach: momentum representation

The formalism starts with writing the wavefunction in the momentum representation,

separating, as before, the incoming and outgoing components:

Ψα(~r, t) =
1√
2π

Nαn(E)∑
n=1

∫
dkαne

−iEαnt/~
[
aαn(kαn)eikαnz + bαn(kαn)e−ikαnz

]
. (32)

Second quantization

Next, we proceed to the second quantization picture in the standard way, by replacing

the incoming and outgoing amplitudes with operators. These operators satisfy the usual
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anticommutation relations. The same procedure will be used later in the course when we

will discuss the quantization of transmission lines and scattering from cavities: in that case,

the operators will be bosons and will satisfy (bosonic) commutation relations.

In momentum space, the canonical commutation relations are:{
âαm(k), â†βn(k′)

}
= δαβδnmδk−k′ . (33)

Note that because the indices must be equal, we don’t have to write them each time for the

vectors k, k′.

The introduction of second-quantized operators transforms Eq. (32) into a field operator,

Ψ̂α(~r, t) =
1√
2π

Nαn(E)∑
n=1

∫
dkαne

−iEαnt/~
[
âαn(kαn)eikαnz + b̂αn(kαn)e−ikαnz

]
. (34)

Energy representation

As usual in condensed matter physics, a more convenient representation is in terms of

energy. To obtain this representation in the second quantization, we use the definitions of

kαn and vαn,

kαn =
1

~
√

2m(E − Eαn), (35)

and the velocity of the electrons in the n-th transverse channel is constructed from the

momentum,

vn(E) =
~kαn
m

. (36)

We thus have for example

dkαn =
dE

~vαn
. (37)

Now, we have to find the corresponding operators âαn(E) and b̂αn(E).

These operators have to satisfy

{âαn(E), â†βm(E ′)} = δαβδmnδ(E − E ′). (38)

In order to find the relation between the momentum- and energy- representation operators,

we use the delta-function relation

δ(f(x)) =
∑
i

1

| df
dx

(xi)|
δ(x− xi), (39)
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where xi are the roots of the equation f(x) = 0. So we then have

δ(k − k′) = δ

(√
2m

~
√
E − Eαn −

√
2m

~
√
E ′ − Eαn

)
= (40)

=
1

~

√
m

2(E − Eαn)
δ(E − E ′) = (41)

=
1

~vαn(E)
δ(E − E ′). (42)

As a result, in order to have the proper commutation relations Eq. (38) we need to define

the energy-representation creation and annihilation operators as

âαn(E) =
1√

~vαn(k)
âαn(k). (43)

â†αn(E) =
1√

~vαn(k)
â†αn(k). (44)

These results yield the following expression for the field operator in the energy representation

Ψ̂α(~r, t) =

∫
dEe−iEt/~

Nα(E)∑
n=1

χαn(x, y)√
2π~vαn(E)

[
âαn(E)eikαn(E)z + b̂αn(E)e−ikαn(E)z

]
, (45)

therefore still composed of two waves (in-going and out-going) but with the operators de-

pending on energy. Note that this is perfectly consistent with the expression of the wave

function (in the first quantization) that we used before Eqs. (14,15).

Landauer current formula

With the field operator we can construct the current operator, using the standard

quantum-mechanical definition,

Îα(z, t) =
e~

2im

∫
dxdy

[
Ψ̂†α(~r, t)

∂

∂z
Ψ̂α(~r, t)−

(
∂

∂z
Ψ̂†α(~r, t)

)
Ψ̂α(~r, t)

]
. (46)

We then insert the definition of the field operator Eq. (45) and using the orthogonality

of the transverse wavefunctions χαn, that is∫
dxdyχ∗αn(x, y)χαm(x, y) = δnm, (47)

and we obtain

Îα(z, t) =

∫
dEdE ′

∑
n

ei(E−E
′)t/~ 1

2π~
√
vαn(E)vαn(E ′)

(48){
(kαn(E) + kαn(E ′))

[
â†αnâαne

i(kαn(E′)−kαn(E))z − b̂†αnb̂αnei(kαn(E)−kαn(E′))z
]

(49)

+(kαn(E)− kαn(E ′))
[
â†αnb̂αne

−i(kαn(E)+kαn(E′))z − b̂†αnâαnei(kαn(E)+kαn(E′))z
]}

.(50)
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We now assume that kαn(E) and vαn(E) are weakly dependent on energy, and we replace

v = ~k/m in the equation above. This results in a much simpler formula,

Îα(t) =
e

2π~

∫
dEdE ′

∑
n

ei(E−E
′)t/~

[
â†αn(E)âαn(E ′)− b̂†αn(E)b̂αn(E ′)

]
. (51)

This equation has the following meaning: note â†αn(E)âαn(E) is the particle number op-

erator for incoming electrons and b̂†αn(E)b̂αn(E) for the outcoming ones. Thus if we write

E ′ = E + ~ω we see that the current is given by the difference between time-dependent oc-

cupation number operators of incoming and outgoing electrons. Note also that this quantity

does not depend on z.

Scattering matrix for operators

In the same way as before, the idea is to describe the transport process entirely in terms

of the scattering matrix s. This time however the amplitudes a and b will be promoted

to quantum operators (second quantization). We then have for example in the case of two

terminals

b̂ = Sâ. (52)

For the case of two terminals, with the leads L and R, we can write

b̂L1

...

b̂LNL

b̂R1

...

b̂RNR


= s



âL1

...

âLNL

âR1

...

âRNR


, (53)

where the matrix s has dimension (NL +NR)× (NL +NR).

In general, with α and β labeling the reservoirs and with m a mode from reservoir β and

n from reservoir α we have

b̂αn(E) =
∑
β,m

sαβnmâβm, (54)

b̂†αn(E) =
∑
β,m

(
sαβnm
)∗
â†βm. (55)
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If we insert these expressions in Eq. (51) we obtain

Îα(t) =
e

h

∫
dEdE ′

∑
j

ei(E−E
′)t/~

[
â†αj(E)âαj(E

′)−
∑
βγ

∑
mn

(sαβjm)∗(E)sαγjn (E ′)â†βm(E)âγn(E ′)

]
.

(56)

This can be put in a more compact form

Îα(t) = 2
e

h

∑
βγ

∑
m,n

∫
dE

∫
dE ′ei(E−E

′)t/~â†βm(E)Aβγmn(α;E,E ′)âγn(E ′), (57)

where we added a factor of 2 for spin and we introduced the notation

Aβγmn(α;E,E ′) = δmnδαβδαγ −
∑
k

(sαβmk)
†(E)sαγkn(E ′). (58)

Finally, we can calculate the average current by using the Fermi distribution (we assume

that the leads are in equilibrium), using the relation

〈â†αm(E)âβn(E ′)〉 = δαβδmnδ(E − E ′)fα(E). (59)

To simplify even more the result, we assume a two-terminal sample. In this case, the

scattering matrix can be represented as

s =

 r t′

t r′

 . (60)

The dimensions of the reflection matrix r is (NL × NL), that of r′ is (NR × NR) of t is

(NR ×NL), and of t′ is (NL ×NR). The matrix s has dimensions (NL +NR)× (NL +NR).

The matrix t is the off-diagonal block of the scattering matrix,

tmn = sRLmn. (61)

As a result, we get

〈IL〉 = 2
e

h

∫
dETr[t†(E)t(E)][fL(E)− fR(E)]. (62)

Another form of this expression is written by using the eigenvalues Tn of the matrix t†t,

which are transmission probabilities. With these,

〈IL〉 = 2
e

h

∫
dE
∑
n

Tn(E)[fL(E)− fR(E)]. (63)
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Linear response: Landauer conductance formula

Consider now the case when a small bias is applied to the device. We will get µL =

µ+ eV/2 and µR = µ− eV/2, where µ is the unbiased value. In the limit of small bias, with

f(E) = [1 + eE/kBT ]−1 we get

fL(E)− fR(E) = f(E − µ− eV/2)− f(E − µ+ eV/2) ≈ eV

(
−∂f(E − µ)

∂E

)
. (64)

Inserting in Eq. (63) we can readily find the conductance 〈IL〉 = GV ,

G = 2
e2

h

∑
n

∫
dETn(E)

(
−∂f(E − µ)

∂E

)
. (65)

For zero temperature, this becomes simply

G = 2
e2

h

∑
n

Tn. (66)

This formula is the Landauer conduction formula, now derived in the full quantum theory.

The formula says that each quantum channel contributes with a unit of conductance 2e2/h

(again, 2 is the electron spin).

VI. EXAMPLE: THE QUANTUM POINT CONTACT

A quantum point contact (QPC) is narrow constriction (see Fig. VI)which allows the

electrons to go through almost ballistically if the channel corresponds to a certain energy

window. A good mathematical model (developed by Büttiker) is in terms of the potential

V (x, y) = V0 −
1

2
mω2

xx
2 +

1

2
mω2

yy
2, (67)

for which the transmission probability can be obtained

Tn(E) =
1

1 + e−2π(E−εn)/~ωx
, (68)

where

εn =

[
~ωy

(
n+

1

2

)
+ V0

]
. (69)

Quiz: Note that the expression of Tn(E) reminds of a step-like Fermi distribution function.

What is the width of this step? What is the condition for the validity of Tn(E) ≈ θ(E− εn).

A good approximation (see the quiz above) is
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FIG. 5: Schematic of a quantum point contact formed when a negative voltage is applied to the

gate electrodes on the top of the AlGaAs layer. This results in the creation of a potential of the

type discussed above in the 2D electron gas of the interface of GaAs-AlGaAs junction. When the

gate voltage made less negative, the number of propagating modes at the Fermi level increases

stepwise. Figures from Ref. [4].

Tn(E) = θ(E − εn). (70)

We now can calculate the conductivity using the formula Eq. (66),

G = 2
e2

h

∑
n

θ(E − εn) = 2
e2

h
NL, (71)

where NL is the number of channels within the transport window.

This shows that the conductance is quantized in units of

2e2

h
=

1

12.5kΩ
= 7.74× 10−5Ω−1, (72)

therefore each channel has a resistance of 12.5kΩ, a value which is easily measurable.

Indeed, what is seen in experiments is a sequence of conductance steps, as the gate voltage

is increase and more and more modes are brought in the transport window.
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