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I How would you define safety in RL?

I Safety in RL is an active research topic!
I The agent is trained to maximize the expected return in a given

task while not taking any action that gives damage to the
environment or itself during learning and/or deployment.
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From Control Theory Perspective

I Adaptive control
I Robust control
I Robust model predictive control
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Optimization CriterionExploration Process

I Risk-directed Exploration

I Utilization of External Knowledge

I Constrained Criterion

I Worst Case Criterion

I Risk-Sensitive Criterion
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OpenAI Safety-Gym

OpenAI Safety-Gym: A. Ray, J. Achiam, and D. Amodei, “Benchmarking Safe Exploration in Deep
Reinforcement Learning,” 2019, https://cdn.openai.com/safexp-short.pdf.
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OpenAI Safety-Gym Some Methods

I Constrained Policy Optimization

I Proximal Policy Optimization

I Trust Region Policy Optimization

I PPO Lagrangian

I TRPO Lagrangian

OpenAI Safety-Gym: A. Ray, J. Achiam, and D. Amodei, “Benchmarking Safe Exploration in Deep
Reinforcement Learning,” 2019, https://cdn.openai.com/safexp-short.pdf.

Safe Exploration



L. Brunke, M. Greeff, A.W. Hall, Z. Yuan, S. Zhou, J. Panerati, and A.P. Schoellig, “Safe learning in
robotics: From learning-based control to safe reinforcement learning,” 2021, arXiv:2108.06266.

Bridging Control Theory and RL



Safe RL

Optimization CriterionExploration Process

I Risk-directed Exploration

I Utilization of External Knowledge

I Constrained Criterion

I Worst Case Criterion

I Risk-Sensitive Criterion
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f (x) subject to

{
ci(x) = 0, i ∈ E Equality Constraints

ci(x) ≥ 0, i ∈ I Inquality Constraints

Feasible Set:

Ω = {x | ci(x) = 0, i ∈ E and ci(x) ≥ 0, i ∈ I}
=⇒ min

x∈Ω
f (x)

Active Set:

A(x) = E ∪ {i ∈ I | ci(x) = 0}
At a feasible point x , the inequality constraint i ∈ I is said to be
active if ci(x) = 0 and inactive if the strict inequality ci(x) > 0 is
satisfied.

Constrained Optimization



A Single Equality Constraint

min
x1,x2

x1+x2 s.t. x2
1 +x2

2−2 = 0

Constrained Optimization



A Single Equality Constraint

min
x1,x2

x1+x2 s.t. x2
1 +x2

2−2 = 0
f (x) = x1 + x2

c1(x) = x2
1 + x2

2 − 2

I = ∅, E = {1}

Constrained Optimization



A Single Equality Constraint

min
x1,x2

x1+x2 s.t. x2
1 +x2

2−2 = 0
f (x) = x1 + x2

c1(x) = x2
1 + x2

2 − 2

I = ∅, E = {1}

Q: What is feasible set?

Constrained Optimization



A Single Equality Constraint

min
x1,x2

x1+x2 s.t. x2
1 +x2

2−2 = 0
f (x) = x1 + x2

c1(x) = x2
1 + x2

2 − 2

I = ∅, E = {1}

Q: What is feasible set?
A: Feasible set for this
problem is a circle of radius√

2 centered at origin.
(Just boundary, not interior)
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x1+x2 s.t. x2
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A: x∗ =

[
−1
−1
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Of (x∗)//Oc1(x∗) Of (x∗) = λ∗1Oc1(x∗) λ∗1 = −1/2
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A Single Equality Constraint

min
x1,x2

x1+x2 s.t. x2
1 +x2

2−2 = 0
f (x) = x1 + x2

c1(x) = x2
1 + x2

2 − 2

I = ∅, E = {1}Let’s introduce Lagrangian function

L(x , λ1) = f (x)− λ1c1(x)

At solution x∗, there is a scalar λ∗1 such that OxL(x∗, λ∗1) = 0

OxL(x , λ1) = Of (x)− λ14c1(x)

1− 2λ∗1x1 = 0 and 1− 2λ∗1x2 = 0

Let’s check our solution x∗ =

[
−1
−1

]
, λ∗1 = −1/2

1− 2(−1/2)(−1) = 0 and 1− 2(−1/2)(−1) = 0
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A Single Equality Constraint

min
x1,x2

x1+x2 s.t. x2
1 +x2

2−2 = 0
f (x) = x1 + x2

c1(x) = x2
1 + x2

2 − 2

I = ∅, E = {1}Let’s introduce Lagrangian function

L(x , λ1) = f (x)− λ1c1(x)

At solution x∗, there is a scalar λ∗1 such that OxL(x∗, λ∗1) = 0

OxL(x , λ1) = Of (x)− λ14c1(x)

1− 2λ∗1x1 = 0 and 1− 2λ∗1x2 = 0

Q: What about x =

[
1
1

]
, λ1 = 1/2 ?
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A Single Equality Constraint

min
x1,x2

x1+x2 s.t. x2
1 +x2

2−2 = 0
f (x) = x1 + x2

c1(x) = x2
1 + x2

2 − 2

I = ∅, E = {1}Let’s introduce Lagrangian function

L(x , λ1) = f (x)− λ1c1(x)

At solution x∗, there is a scalar λ∗1 such that OxL(x∗, λ∗1) = 0

This condition is necessary but not sufficient.
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A Single Inequality Constraint

min
x1,x2

x1+x2 s.t. 2−x2
1−x2

2 ≥ 0
f (x) = x1 + x2

c1(x) = 2− x2
1 − x2

2

I = {1}, E = ∅

Q: What is feasible set?
A: Now, feasible set consists
of the circle and its interior!
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A Single Inequality Constraint

min
x1,x2

x1+x2 s.t. 2−x2
1−x2

2 ≥ 0
f (x) = x1 + x2

c1(x) = 2− x2
1 − x2

2

I = {1}, E = ∅

Constraint normal Oc1 points
toward the interior of the
feasible region at each point
on the boundary of the circle.

Of =

[
1
1

]
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[
−2x1

−2x2

]
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• decreases the objective function f (x) to first order.
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A Single Inequality Constraint

min
x1,x2

x1+x2 s.t. 2−x2
1−x2

2 ≥ 0

f (x) = x1 + x2

c1(x) = 2− x2
1 − x2

2

Of =

[
1
1

]
Oc1 =

[
−2x1

−2x2

]
A given feasible point x is not optimal, if we can find a small step
s that both

• retains feasibility, =⇒ c1(x) + Oc1(x)>s ≥ 0

• decreases the objective function f (x) to first order.

Similarly, approximate f (x) to first order: f (x + s) ≈ f (x) + Of (x)>s

f (x) is decreasing =⇒ f (x + s)− f (x) < 0

f (x) + Of (x)>s − f (x) < 0
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A Single Inequality Constraint

min
x1,x2

x1+x2 s.t. 2−x2
1−x2

2 ≥ 0

f (x) = x1 + x2

c1(x) = 2− x2
1 − x2

2

Of =

[
1
1

]
Oc1 =

[
−2x1

−2x2

]
A given feasible point x is not optimal, if we can find a small step
s that both

• retains feasibility, =⇒ c1(x) + Oc1(x)>s ≥ 0

• decreases the objective function f (x) to first order.

Similarly, approximate f (x) to first order: f (x + s) ≈ f (x) + Of (x)>s

f (x) is decreasing =⇒ f (x + s)− f (x) < 0

f (x) +Of (x)>s −f (x) < 0 =⇒ Of (x)>s < 0
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A Single Inequality Constraint

min
x1,x2

x1+x2 s.t. 2−x2
1−x2

2 ≥ 0

f (x) = x1 + x2

c1(x) = 2− x2
1 − x2

2

Of =

[
1
1

]
Oc1 =

[
−2x1

−2x2

]
A given feasible point x is not optimal, if we can find a small step
s that both

C1: • retains feasibility, =⇒ c1(x) + Oc1(x)>s ≥ 0

C2: • decreases the objective function
f (x) to first order.

=⇒ Of (x)>s < 0
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C2: Of (x)>s < 0

Case 1: Given x lies strictly inside the circle, c1(x) > 0
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s= −αOf (x)
for any positive scalar α
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Remember the conditions:
C1: c1(x) + Oc1(x)>s ≥ 0
C2: Of (x)>s < 0

Case 1: Given x lies strictly inside the circle, c1(x) > 0
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−2x1
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s

Q: How would you select s?

s= −αOf (x)
for any positive scalar α
sufficiently small.

However, no step s is given
when Of (x) = 0

Remember the conditions:
C1: c1(x) + Oc1(x)>s ≥ 0
C2: Of (x)>s < 0

Case 1: Given x lies strictly inside the circle, c1(x) > 0
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A Single Inequality Constraint

min
x1,x2

x1+x2 s.t. 2−x2
1−x2

2 ≥ 0

f (x) = x1 + x2

c1(x) = 2− x2
1 − x2

2

Of =

[
1
1

]
Oc1 =

[
−2x1

−2x2

]
Case 2: Given x lies on the boundary of the circle, c1(x) = 0

If Of and Oc1 point in the opposite direction

Of = λ1Oc1 for some λ1 < 0

Intersection region is
entire open half-space!

Constrained Optimization



A Single Inequality Constraint

min
x1,x2

x1+x2 s.t. 2−x2
1−x2

2 ≥ 0

f (x) = x1 + x2

c1(x) = 2− x2
1 − x2

2

Of =

[
1
1

]
Oc1 =

[
−2x1

−2x2

]
Case 2: Given x lies on the boundary of the circle, c1(x) = 0

If Of and Oc1 point in the same direction

Of = λ1Oc1 for some λ1 ≥ 0
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min
x1,x2

x1+x2 s.t. 2−x2
1−x2

2 ≥ 0

f (x) = x1 + x2

c1(x) = 2− x2
1 − x2

2

Of =

[
1
1

]
Oc1 =

[
−2x1

−2x2

]
Case 2: Given x lies on the boundary of the circle, c1(x) = 0

If Of and Oc1 point in the same direction

Of = λ1Oc1 for some λ1 ≥ 0

Intersection region is empty!
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A Single Inequality Constraint

min
x1,x2

x1+x2 s.t. 2−x2
1−x2

2 ≥ 0

f (x) = x1 + x2

c1(x) = 2− x2
1 − x2

2

Of =

[
1
1

]
Oc1 =

[
−2x1

−2x2

]
Case 2: Given x lies on the boundary of the circle, c1(x) = 0

λ1 ≤ 0 λ1 ≥ 0

Q: Which one shows the convergence?
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When no first order feasible descent direction exists at some point
x∗, we have that

OxL(x∗, λ∗1) = 0 for some λ∗1 ≥ 0.
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c1(x) = 2− x2
1 − x2
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Of =

[
1
1

]
Oc1 =

[
−2x1

−2x2

]
Case 1: Given x lies strictly inside the circle, c1(x) > 0
Case 2: Given x lies on the boundary of the circle, c1(x) = 0

Optimality Conditions for both Case 1 and Case 2:

When no first order feasible descent direction exists at some point
x∗, we have that

OxL(x∗, λ∗1) = 0 for some λ∗1 ≥ 0.

We also require: λ∗1c1(x∗) = 0→ Complementarity Condition

λ1 can be strictly positive only when the corresponding c1 is active.
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OxL(x∗, λ∗) = 0,

ci(x∗) = 0, for all i ∈ E ,
ci(x∗) ≥ 0, for all i ∈ I,

λ∗i ≥ 0, for all i ∈ I,
λ∗i ci(x∗) = 0, for all i ∈ E ∪ I.
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OxL(x∗, λ∗) = 0,

ci(x∗) = 0, for all i ∈ E ,
ci(x∗) ≥ 0, for all i ∈ I,

λ∗i ≥ 0, for all i ∈ I,
λ∗i ci(x∗) = 0, for all i ∈ E ∪ I.

Often known as the Karush-Kuhn-Tucker (KKT) conditions.
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I Safety in RL is an active and popular research area.
I Definitions and methodologies are subject to change

depending on the applications and requirements.

I Adapting optimization procedure to safety requirements are
often preferred, especially for a known / partially known
transition dynamics and environment.

I This adaptation for constrained optimal control should be
performed in such a way that the KKT conditions must be
satisfied.

Summary


