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This lecture follows mostly Refs. [1, 2]. The input-output theory is done in many other

quantum optics textbooks, see for example Ref. [3]. As a prerequisite to what follows and

if you want to have a more in-depth understanding of the topic, it would be good to read

section D1 from Ref. [1], which deals with transmission line quantization. This allows you to

relate the operators b̂q, b̂
†
q discussed below to operators corresponding to voltages and phases

on a transmission line. Otherwise the derivation below is quite general, that is, independent

on what type of device you have in mind - it applies to cavities with semitransparent mirrors

(as used in quantum optics) and to microwaves resonators with capacitive outcouplings.

I. INPUT-OUTPUT THEORY

The formalism refers to a system which is coupled to an environment. In many cases of

interest, we trace out completely the degrees of freedom of the environment. The result is a

density matrix that evolves according to a master equation. Here we want to keep track of

the modes of the environment. In other words, we want to recover some information about

the cavity, which otherwise would just spread in the environment. From the point of view

of the mode in the cavity, called â(t), â†(t) in the following, the effect of the environment

will be seen as a decay with some constant κ, but there will be also an effect due to photons

being injected by a field operator bin defined by using the modes of the environment.

The basis of the formalism is separating the degrees of freedom into internal cavity modes

and external bath modes. The Hamiltonian is then given by

Ĥ = Ĥsys + Ĥbath + Ĥint, (1)

where Ĥsys is the cavity system Hamiltonian, Ĥbath is the bath Hamiltonian,

Ĥbath =
∑
q

~ωq b̂†q b̂q, (2)

and Ĥint is the interaction Hamiltonian between the two. In the rotating wave approxima-

tion, i.e. after neglecting the fast oscillating terms that don’t conserve the total number of

excitations, the interaction can be written as

Ĥint = −i~
∑
q

(fqâ
†b̂q − f ∗q b̂†qâ). (3)
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Here â (for the cavity) and b̂ (for the bath) are bosonic operators with commutation relations

[â, â†] = 1 and [b̂q, b̂
†
q′ ] = δq,q′ .

The time evolution of both the environment and cavity operators is given by the Heisen-

berg equations of motion. For the bath it reads:

˙̂
bq =

i

~
[Ĥ, b̂q] = −iωq b̂q + f ∗q â. (4)

The solution for Eq. (4) can be obtained by integrating from some time, t0, which lies in

the far past before any packet launched at the cavity has reached it. The result is

b̂q(t) = e−iωq(t−t0)b̂q(t0) + f ∗q

∫ t

t0

dτe−iωq(t−τ)â(τ). (5)

The first term on the right hand side is the evolution of the bath without interaction with

the cavity and b̂(t0) is the cavity operator at t0. The second term comes from the interaction

and it represents the waves radiated by the cavity into the bath.

For the operator of the cavity, the Heisenberg equation of motion reads:

˙̂a =
i

~
[Ĥsys, â]−

∑
q

fq b̂q. (6)

With the solution for b̂q, Eq. (5), the second term can be written as

∑
q

fq b̂q =
∑
q

fqe
−iωq(t−t0)b̂q(t0) +

∑
q

|fq|2
∫ t

t0

dτe−i(ωq−ωc)(t−τ)
[
e−iωc(t−τ)â(τ)

]
. (7)

The term in the brackets on the right is introduced because it is a slow-varying term. If

the system part of the Hamiltonian were a simple harmonic oscillator with frequency ωc, we

would get from the Fermi golden rule for the decay rate from state n = 1 to n = 0:

κ(ωc) =
2π

~
∑
q

|~fq|2δ(~ωc − ~ωq) (8)

= 2π
∑
q

|fq|2δ(ωc − ωq). (9)

From this, we can observe that∫ ∞
−∞

dν

2π
κ(ωc + ν)e−iν(t−τ) =

∫ ∞
−∞

dν
∑
q

δ(ωc + ν − ωq)e−iν(t−τ)|fq|2 =
∑
q

|fq|2e−i(ωq−ωc)(t−τ).

(10)
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Using the Markov approximation, which assumes that κ(ν) = κ is constant over the range

of relevant frequencies, we get:∑
q

|fq|2e−i(ωq−ωc)(t−τ) = κδ(t− τ). (11)

With this, the second term in Eq. (7) finally becomes∑
q

|fq|2
∫ t

t0

dτe−i(ωq−ωc)(t−τ)e−iωc(t−τ)â(τ) =

∫ t

t0

dτκδ(t− τ)eiωc(t−τ)â(τ) (12)

=
κ

2
â(t). (13)

To obtain the last equality we used∫ t

−∞
dτδ(t− τ)f(τ) =

1

2
f(t). (14)

This identity is not in general valid for any representation of the Dirac function; however,

it is clearly valid for the Gaussian representation, which is symmetric with respect to t. In

reality there is of course no ideal Dirac distribution - the real waveforms are of typically of

some Gaussian form. The equation of motion for the cavity operator finally becomes

˙̂a =
i

~
[Ĥsys, â]− κ

2
â−

∑
q

fqe
−iωq(t−t0)b̂q(t0). (15)

The second is interpreted as the part describing waves radiated by the cavity. The factor

of 1/2 is important because it means that the amplitude decays at half of the rate of the

energy decay rate κ. Note that this term is linear - within the Markovian approximation

the effect of the bath is taken into account here by a simple linear decay term.

The next thing we do is treat f ≡
√
|fq|2 as constant. This allows us to write the decay

rate as a function of density of states:

κ = 2πf 2ρ, (16)

where ρ is the density of states which we also treat as constant. With this simplification,

replacing fq ≈ f =
√
κ/
√

2πρ, Eq. (15) becomes

˙̂a =
i

~
[Ĥsys, â]− κ

2
â−

√
κ√

2πρ

∑
q

e−iωq(t−t0)b̂q(t0). (17)
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Input and output modes

Now we can define the so-called ’input mode’

b̂in(t) =
1√
2πρ

∑
q

e−iωq(t−t0)b̂q(t0). (18)

In terms of the input mode, the equation of motion for the cavity operator becomes

˙̂a =
i

~
[Ĥsys, â]− κ

2
â−
√
κb̂in. (19)

Thus the input mode acts as the driving field of the cavity. One can imagine also that at

the time t = t0 = −∞ the field b̂in was launched towards the cavity, and it was evolving

under the environment equations of motion until it reached the cavity.

Next, we are going to do the same calculation but instead write the cavity operator in

terms of the so-called ’output mode’. Let us first define t1 > t as some time after the input

field has interacted with the cavity. For example if the time t approaches t1 = ∞, then

the mode is asymptotically close to what emerges from the cavity after a long enough time

(or after a long enough distance from the cavity). From the equation of motion for b̂q, this

solution becomes

b̂q(t) = e−iωq(t−t1)b̂q(t1)− f ∗q
∫ t1

t

dτe−iωq(t−τ)â(τ). (20)

So this time we imagine that the initial condition is in the future, after the cavity has

interacted with the bath.

Define now output mode as

b̂out(t) =
1√
2πρ

∑
q

e−iωq(t−t1)b̂q(t1). (21)

After doing the calculations similarly as before, we get for the cavity operator in terms of

the output mode

˙̂a =
i

~
[Ĥsys, â] +

κ

2
â−
√
κb̂out. (22)

Now we have two equations of motion for â. One in terms of the input mode, Eq. (19),

and one in terms of the output mode, Eq. (22). Substracting the two from each other yields

a relationship between the input and the ouput modes:

b̂out = b̂in +
√
κâ. (23)

In Fig. I we present a schematic of the input and output modes.
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FIG. 1. Schematic of the input and output modes in a one-sided cavity.

II. APPLICATIONS: CAVITIES AND RESONATORS

Let us now take our system to be a simple non-interacting cavity with

Ĥsys = ~ωcâ†â. (24)

A. One-sided cavity

The equation of motion in terms of the input mode now reads

˙̂a(t) = −iωcâ(t)− κ

2
â(t)−

√
κb̂in(t). (25)

In the Fourier space, this equation becomes a simple algebraic equation

−iωâ[ω] = −iωcâ[ω]− κ

2
â[ω]−

√
κb̂in[ω], (26)

where the Fourier transform is defined as

â[ω] =

∫ ∞
−∞

dteiωtâ(t), â(t) =
1

2π

∫ ∞
−∞

dωe−iωtâ[ω], (27)

and correspondingly for the inverse transformation. The solution is given by

â[ω] = −
√
κ

i(ωc − ω) + κ/2
b̂in[ω] ≡ −

√
κχc(ω − ωc)b̂in[ω]. (28)

Here we have defined the cavity susceptibility as

χc(ω − ωc) =
1

κ/2− i(ω − ωc)
. (29)

The output field will represent what is effectively seen by an observer situated somewhere

far enough from the cavity. Using b̂out = b̂in +
√
κâ, we get

b̂out[ω] =
ω − ωc − iκ/2
ω − ωc + iκ/2

b̂in[ω]. (30)

Now we can consider two limits:
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FIG. 2. Schematic of the input and output modes in a double-sided cavity.

• At resonance, ω = ωc, we get that χc = 2/κ and

b̂out[ω] =

√
κ

2
â[ω] = −b̂in[ω]. (31)

Also, we get that the power radiated to the cavity is the same as power radiated out

of the cavity,

P = ~ω〈b̂†out(t)b̂out(t)〉 = ~ω〈b̂†in(t)b̂in(t)〉 =
κ

4
~ω〈â†(t)â(t)〉. (32)

Note that this is not the same as the naive guess, ~ωκ〈â†â〉, due to interference between

the part of the incoming wave which is reflected from the cavity and the field radiated

by the cavity.

• Far off-resonance limit. In this case we have

b̂out[ω] = b̂in[ω]. (33)

Everything is reflected back from the cavity.

B. Double-sided cavity

We now consider the case of a double-sided cavity, see Fig. II B for a schematic.

The equation of motion in terms of the input mode reads

˙̂a(t) = −iωcâ(t)−
(κ1

2
+
κ2
2

)
â(t)−

√
κ1b̂1in(t)−

√
κ2b̂2in(t). (34)

In the Fourier space, this equation becomes a simple algebraic equation

−iωâ[ω] = −iωcâ[ω]−
(κ1

2
+
κ2
2

)
â[ω]−

√
κ1b̂1in(ω)−

√
κ1b̂2in[ω], (35)

and therefore

â[ω] = −
√
κ1b̂1in[ω] +

√
κ2b̂2in[ω]

i(ωc − ω) +
(
κ1
2

+ κ2
2

) . (36)
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Next, we write the relation between the input and the output field at each mirror,

b̂1out = b̂1in +
√
κ1â, (37)

b̂2out = b̂2in +
√
κ2â. (38)

After a little algebra, we find

b1out[ω] =

[
κ1−κ2

2
+ i(ω − ωc)

]
b̂1in[ω] +

√
κ1κ2b̂2in[ω]

i(ω − ωc)−
(
κ1
2

+ κ2
2

) , (39)

b2out[ω] =

[
κ2−κ1

2
+ i(ω − ωc)

]
b̂2in[ω] +

√
κ1κ2b̂1in[ω]

i(ω − ωc)−
(
κ1
2

+ κ2
2

) . (40)

Symmetric cavity

Consider for example the case of equally transmitted mirrors, κ1 = κ2 = κ. In this case

Eq. (39,40) becomes

b̂1out[ω] =
i(ω − ωc)b̂1in[ω] + κb̂2in[ω]

i(ω − ωc)− κ
. (41)

This expression can be analized in two limits:

• Near the resonance

b̂1out[ω] ≈ κ

i(ω − ωc)− κ
b̂2in[ω], (42)

which is a through-pass Lorenzian filter.

• Far from resonance |ω − ωc| � κ the input field is completely reflected

b̂1out[ω] = b̂1in[ω]. (43)

A simple model for attenuators

The two-sided cavity is the simplest model for attenuation. Consider Eq. (39). Then let

us imagine that b2in is a signal that enters the cavity. Suppose we do not input any signal

b1in (except the vacuum, which enters in inevitably).

b1out[ω] =

√
κ1κ2

i(ω − ωc)−
(
κ1
2

+ κ2
2

) b̂2in[ω]. (44)

We notice that |b1out| < |b2in|, and this is due to the fact that∣∣∣∣∣
√
κ1κ2

i(ω − ωc)−
(
κ1
2

+ κ2
2

)∣∣∣∣∣ < 1. (45)
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III. CONVENTION USED FOR TIME-FOURIER TRANSFORMS OF OPERA-

TORS

It is important to spell out explicitly the conventions we use for the Fourier transform,

especially for the writing of the adjoint of the Fourier-transformed operator â(t) or b̂(t). The

question is: which one is the canonically conjugate operator of â[ω], is it (â[ω])† or â†[ω].

We follow here the convention introduced for the first time in Ref. [1]. Before this paper, in

most textbooks and papers the conventions varied or were not very explicitly spelled out.

The Fourier transform is

â[ω] =

∫ ∞
−∞

dteiωtâ(t), (46)

with inverse

â[t] =
1

2π

∫ ∞
−∞

dωe−iωtâ[ω], (47)

and the commutation relations are

[
â(t), â†(t′)

]
= δ(t− t′). (48)

Taking the adjoint of Eq. (47) results in

â†[ω] = (â[−ω])† =

∫ ∞
−∞

dteiωtâ†(t). (49)

Thus in this convention the Fourier transform acts in the same way (with the same exponent

eiωt) no matter on what operator - either â or â†,

(â[ω])† =

∫ ∞
−∞

dte−iωtâ†(t), (50)

and [
â[ω], (â[ω′])

†
]

= 2πδ(ω − ω′), (51)

and similarly for the b̂ operators.

For example, if the modes are at thermal equilibrium, with photon (bosonic) statistics,

we can write 〈(
b̂in[ω]

)†
b̂in[ω′]

〉
= 2πδ(ω − ω′)nB(~ω), (52)〈

b̂in[ω′]
(
b̂in[ω]

)†〉
= 2πδ(ω − ω′)[1 + nB(~ω)]. (53)
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Finally, it is worth reminding the following representation of the Dirac delta function,

2πδ(t− t′) =

∫ ∞
−∞

dωe−iω(t−t
′). (54)
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