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LEARNING OUTCOMES

Students are able to solve the lecture problems, home problems, and exercise problems on
the topics of week 47:

O The basic building blocks of element contributions: virtual work density and element

Interpolant (to the nodal values).

O Derivation of the beam element contribution starting with the basic building blocks

O Element interpolant and shape functions
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EXAMPLE 4.1. Consider the beam truss of the figure. Determine the displacements and
rotations of nodes 2 and 4. Assume that the beams are rigid in the axial directions. Cross-

sections and lengths are the same and Young’s modulus E is constant.

7 fL° 11 fL°

Answer —————— and =
%2="300 E %4 =T800 EI
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e The Mathematica code solution is given by ( f, is specified by its nodal values)

model properties geometry
1 BEAM ({E, G}, {A, I, I}} Line[{1, 2}]
2 BEAM {{E, G}, {A, I, I}, {0,0, {f,0}}} Line[{2, 4}]
3 BEAM ({E, G}, {A, I, I}} Line[{4, 3}]
{X,Y,2} {ux,Uy,uz} {Ox,0v,07}
1 {0,0, L} {6, 0, 0} {0, 0, 0}
2 {0, 0, 0} {0, 0, 0} {0, 6Y[2], 0}
3 {L, @, L} {0, 0, 0} {0, 0, 9}
4 {L, @, 0} {0, 0, 0} {0, 6Y[4], 0}
7fL° 11 f L°
{@Yszﬁ»_ , 6Y[4] - }
900 E I 1800 E I

Parameters of the problem can be functions of x. Then, derivation of the element

contribution by using the exact solution may not be practical and, with 2D/3D elements for

plates etc., impossible.
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4.1 VIRTUAL WORK EXPRESSION

To find the virtual work expression of an element without recourse to the exact solution of
a boundary value problem (which may not be available due to non-constant material

properties, distributed forces etc.)

O Start with the basic building blocks: virtual work density for the model and a polynomial

Interpolant to nodal displacements and rotations.

O Substitute the interpolant to the virtual work density expression and integrate the density
over the mathematical domain occupied by the element (the density represents virtual

work per unit length, area etc.).

O Rearrange to get the standard form oW = —5aT(Ka— F).
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VIRTUAL WORK DENSITY

Virtual work densities are concise representations of engineering models (bar, beam, plate,
shell, etc.). For the four loading modes of the beam model virtual (density = virtual work

per unit length)

dou du

Bar: own =———EA—+0ouf,
dx dx
V
. dog dg
Torsion: oW =———Gl,., —+ o¢pm
Q dx rr dx ¢ X
Z
d2sw d2sw Q

Bending (Xz): owg =— El,, ——— +owf, o o

dX2 Yy dX2

2 2
Bending (xy): own = _d%ov El,, av

+ ovf
dx?

dX2 y
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STRUCTURE ANALYSIS; IMPROVED RECIPE

Derive the element contributions oW°® from virtual work density of the model and
polynomial interpolation of the nodal displacements and rotations in the material

coordinate system.  a new step

Express the nodal displacements and rotations of the material coordinate system in terms

of those in the structural coordinate system.

Sum the element contributions over the elements and their loading modes to end up with
: : _ e _ e

the virtual work expression SW =) __ oW°=3» _ (3 = &Wp) of structure.

Restructure to get the form oW = —sa’ (Ka-F)

eck

Use the principle of virtual work oW =0 Véa, fundamental lemma of variation calculus

for sacR", and solve the dofs from Ka—F =0.

Week 47-7



4.2 BAR MODE

X

h

Z - -
Virtual work density: Swg = Swint + owSt = — dd5u EA gu +duf,,
X X
.
h—X u
Linear interpolant: u(x)=N" zi{ } { Xl}
h X Uy o

Cross-sectional area A, Young’s modulus E, and force per unit length f, (acting on the x-
axis) may depend on position. Virtual work density depends only on the model but the
Interpolant (or approximation) can be chosen in various ways!
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BAR ELEMENT CONTRIBUTION

X

ou T EAl 1 -1/|u foh |1 (ux\ 1 AX

oW =—{ L (=2 AL X2 u, =i"Juy b, where i=={AY !
§UX2 h|-11 UX2 2 |1 h

Uz | |AZ ]

Above, f, and EA are assumed constants and the elements of matrix I (1x1, 2x1, 3x1) are
the components of the unit vector i in the structural coordinate system. The algorithm of

Mathematica code is based on element contributions in its variational form!
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e First, element interpolant u = NTa and its variation su=N'sa=gsa"N are substituted

into the virtual work expression to get (here Q =]0,h[ and dQ = dx)

h
oW = | CIUEAM L siydx =
0 dx dx
h
—j 5Td—NEAdN adx+ [ sa'Nfdx <
dx dx 0
h dN_ dNT h
oW =-5a (j EA— —dxa- jo Nf,dx). <€

e If the interpolant is taken to be linear, shape functions and the nodal values are given by

h— -1 ou
N=i X , iN=i a= 1 and sa=< <
h| X dx h|l Uy o OUy 5
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e Assuming that Young’s modulus E, cross-sectional area A, and the distributed force f,

are constants, integration over the element domain gives (the expressions of the shape

functions need to be substituted now)
T
ou -1 u
=t 0 32 fiak
OUy o 1 Uy
Suy )" 1 -1 1
SW = — Ux1 (E - Ux1 _M ).
§UX2 h -1 1 Uy o 2 |1

Derivation out of virtual work densities works also when Young’s modulus E, cross-

h 1[(h=X
jo F{ ) }fxdx) &

sectional area A, and the distributed force f, are not constants!
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EXAMPLE 4.2. Consider the bar model and a piecewise linear interpolant of the nodal
values. Determine the equivalent nodal forces F of the element contribution
OW =W 1+ sW ™ in which sW'™ = —sa"Ka and oW = sa’F, when length of the

element is h and

(@) f, Is constant,

(b) f, is piecewise linear f =N'f, where the nodal values are f' ={f, f.»},
X X x1 "x2

(c) fy= F@(%—%), where ¢ is the Dirac-delta and F, is a point force.
f.h

B 1 _E 2 1| fy K 1
Answer (a) F_7{1} (b) F_GL Zfoz} (c) F= ; {1}
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The equivalent nodal forces are obtained by using u=N"a in the virtual work

expression of the external forces

h h—X h h—X
awethjo suf,dx, su=gsa'N and N=%{ ) }:» F= 3{ ) }fxdx €

With the constant, linear and Dirac delta distributions

h 1]h-X h 1[h-X f.h {1
A A e L
T
h h-— h h—x| |h—x f 2 1||f
F=" 2 M ax= (" 1 ax] LD A€
0 h| X 0 h| X X fio] 6|1 21| fyo

h 1[h—X h F (1
F_jo F{ ) }FX5(X—E)dx_7{1}
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EXAMPLE 4.3. The bar of the figure (EA is constant) is loaded by a quadratic distributed
force f, = f&(2-<&) where £ =x/L. Determine the displacement at the free end by the

finite element method. Use one, two, and four elements of equal lengths.

5 fL? 5 fl2
Answer Uy, 5 EA no matter the number of elements (exact u(L) 5 EA )
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e Distributed force f,, Young’s modulus E, and the cross-sectional area A may depend

on x. In Mathematica code a quadratic distributed force f, is defined by its values on

the nodes and at the midpoint.

| model properties geometry
1 | BAR [{E}, {A}, {{@,3{,{},@, o}} Line[ {1, 2}]
| {X,Y,Z} {ux,uy,uz} {6x,6v,07}

1 | {0, 0, 0) {0, 0, 0) {0, 0, 0}
2

{L, 0, 0} {ux(2], e, 6} {0, 0,0}

{SFLE 5fL2 5fL2
12Ae’ 12AE” 12AE.

Above, the problem has been solved three times with 1, 2, and 4 elements and displacements

at the free end are given as a list (see the Mathematica notebook for the details).
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EXAMPLE 4.4. The cross-sectional area of a bar is given by A/Ay=1-x/(2L).
Assuming that the approximation of displacement u is (piecewise) linear, Young’s modulus
E and density o of the material are constants and distributed loading f, is due to the gravity,

determine the displacement at the free end of the bar. Use two elements of equal length.

| X,X

29 g pL? 3-log4 gpl?

70

, error 2.7%)

... (exact u(L) =

Answer u(L)=
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e Element interpolants of displacement, cross-sectional area (in terms of its nodal values),
and weight per unit length are here

u(x):%{h—x x}{u’d} = g—i:%{_l 1}{le} and @:%{_1 1}{5le}

Uy o Uy o dx 5UX2

A(x):%{h—x x}{?} = fxngAzp—hg{h—X x}{:&z}

2

e Virtual works of internal and external forces per unit length of a bar are given by
T T
5Wint__ Oy E -1 {—l 1} Uxa _ oy E 1 —-1}juy
Suyp] h% (1 Ux2 Suxa | h? -1 1 ]|uy
- Suy ) E A1 -1](u
swit=—3 L —fh—x x} L
Suyo | h3 Al =1 1 ||uy
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T
Sug )" 1 (h=x A

5 ext _ x1 h . .

W {§UX2 h2 X { X X} A2 Y

Element contribution of a typical element is obtained as integral over the domain

occupied by the element

.
é\Ni”t:jh SwiMdy = oy | E(AL+A)| 1 —1]jux
o " Su,, 2h  |-1 1 |{ug,|’

-
h ou 21

S ext :J‘O §W8(th: . x1| po9h A

UX2 6 1 2 A2

T
: ou 1 -1(|u 21
é\N:é\Nlnt+é\NeXt:_ §Xl (EAS]_‘FAZ x1 _P_gh AI. )

Uy o h 2 -1 1 Uy o 6 |1 2 A2
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e Element contributions of the two elements

.
1__| O | 7EA 1 -11[ 0 | pglA [1L L3
W= {511)(2} 4L {—l 1}{UX2} 48 {10}) (A=Hy A= 1 ),

awZZ_{g“XZ}T %{1 —1}{“X2}_P9LA0{8}) (A= a Py
uxs] © AL |-1 1 ||uxs| 48 |7 1 )

e Virtual work of the structure is the sum over elements oW = Z SWE = oWl + ow?

|
o g L% S

48 OUx3 4|5 5 Uy 3 48 |7

W :_{gUXQ}T (%{12 —SHUXz}_ngAO {18})
Ux 3 AL | -5 5 ||Uxs 43 /
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e Principle of virtual work and the fundamental lemma of variation calculus give
T

ou 12 -5 ||u 18 ou

Sw = _Joux2 (ﬂ x2| pPILA y=0 wiotx2l
5“)(3 4. | -5 b Uy 3 48 { 5UX3

12 -5 ||u 18
EAO X2 ngAO -0 &
4L | -5 5 Uy 3 48 {

Ux2| pgl2[12 =571 [18) pgl2 [5 57(18] pgl? [25/84 (_
Uyxs| 12E|-5 5 7| 12.35E|512|| 7| E |29/70]
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e Inthe Mathematica code of the course, the given quantities may vary linearly

model properties geometry
1 BAR {{E},{{A@,%H,{{A@gp,mj#},@, 0}} Line[ {1, 2}]
2 BAR {{E},{{%,A—f}},{{“igp,"@zgp},@, 0} Line[{2, 3}]
{X:Y:Z} {UX:UY:UZ} {QX:GYJQZ}
1 {0, 0, 0} {6, 0, 0} {0, 0, 0}
{;,0,0} {ux[2],06,0} {0, 0,0)
3 {L, 0, 0} {ux[3], @, 0} {0, 0, 0}

25 g L2 29 g L2
{uxm L2228 P X3 228 p}
84 1 70 E
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4.3 BENDING MODE

HHHHlHHH

2 2
int ext d“ow d“w

Virtual work density:  dwg =6Wg +oWg =-———Elyy —+wf,
dx dx
( 2 1T
1-8)"A+29)| [uy
_h(1-&)2 0
Cubic interpolant: w(x)=-<- d7e)s S <-....¥}.>where gzﬁ
(3—2&)&2 Uz h
| -ne2e-n | 92
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BEAM BENDING ELEMENT

muuumm

0,1
(Su, )" 12 —6h{-12 —6h|(u,’ (6) o
u
50 El,, | -6h 4h% 6h 2nh?||6y —h X
oW = —d . 1> ( Yy S o fzh< ------- ), uzsz<uY > etc.
Su,,[ ~ p3 |-12 6h 12 6h ||u,| 12 |6 ]
g Z)
50y | —6h 2h? 6h 4h? | |fy2] us

Above, f, and El,, are assumed to be constants and the elements of matrices i, j and K (

1x1, 2x1, 3x1) are the components of the unit vectors i,] and k in the structural

coordinate system.
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e First, element interpolant (approximation) w= NTa and its variation sw=gsa'N are

substituted into the virtual work expression to get

2
h
(92w e dW+5wf Jdx o =

W =] dZ Y a2

0

2 2n1 T
h
=—j saTdNg d°N

h o T
7 Ely—-adx+ |, sa'Nfdx <

h d°N d?NT
SW =—5a (j —Elyy 2

h
- jO Nf,dx). <€

e The shape function expressions and their second derivatives are (Mathematica is useful

In the calculations)
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(1—x/h)?(L+2x/ h) ( 6(2x/h-1)

—h(1—x/h)2x/h 2 —2(3x/h—=2)h
N =/ (L—-x7h)"x/ s and d |2\|: 12< (3x/ ) s
(3—2x/h)(x/h)? dx* h%| 6(1-2x/h)

| —@3x/h-1h

| —h(x/h)*(x/h-1)

In the next step, the shape function expressions are substituted into the virtual work
expression. Integration over the domain occupied by the element gives the element

contribution. A derivation along these lines is valid also when the given functions are

not constants!
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EXAMPLE 4.5. The integral representation of equivalent nodal forces is F = er Nf,dQ.
Determine the equivalent nodal forces of a beam element for (a) f, =const.,, (b)
f,=1,0-&)+&f,5,and () f, =F,8(x—h/2) (Dirac delta at the midpoint), when

)
N ={(1-£)’(W+28) -h(L-£)%¢ (3-25)” -h&*(£-D)

6 21 | 9 4
~h -3h —2h ~h
Answer F :&< - F= hf21< S hfzz J > and F :i< X
12 60 | 9 60 | 21 8
| h | | 2h | | 3h | L h
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(- x/h)2@+2x/h)
—h(1-x/h)?x/h
(3—2x/h)(x/h)?
| —h(x/h)*(x/h=1) |

(- x/h)2@+2x/h)
~h(L-x/h)?x/h
(3—2x/h)(x/h)?
| —h(x/h)*(x/h-1)

(- x/h)2@+2x/h)
—h(1-x/h)*x/h
(3—2x/h)(x/h)?

| —h(x/h)*(x/h=1) |

Week 47-27

h
F.o(x——=)dx =
>z( 2) 3

F

Tz

(6\
—h
>deX:&<-------> €
12 | 6
" h)
X X hf
1-2)f, +=f,,]dx =—2
eL( h) z1 h 22] 60 )

o

hf,,
60




4.4 INTERPOLATION

Piecewise linear interpolant to nodal values {(Xo, fg), (X, f1),.... (X, fn)} gives the simplest

continuous polynomial approximation to f (x).

Interpolation error
f (xlaﬁ) / p

()Cz,fz) (x59]%)
3 4 5
0 1 2 X
(X0 /o)
(X4,f4)
(X3, /3)

Interpolation with piecewise linear polynomials extends straightforwardly to more

dimensions, higher order polynomials, and divisions of the domain into elements.
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EXAMPLE 4.6 Interpolants of f(x,y)/F =sin(2zx/L)sin(zy/L)/4 on square domain

(x,y)/ L e[0,1]x[0,1] with triangle and rectangle elements of increasing number.

1.0 10

1.0
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ELEMENTS
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SHAPE FUNCTIONS
Shape functions are used to interpolate the nodal values inside the elements. The shape
function N; of node i in element Q°

O is the lowest order polynomial taking the value 1 at node 1 and the value O at all the other

nodes of the element.

O shape functions should satisfy the previous condition on each edge (as an example, shape

function should be linear on an edge of two nodes)

O Sum of the shape functions of an element should be 1.

The shape functions can often be deduced directly by using the conditions above or/and by

using the Lagrange interpolation polynomials.
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Lagrange interpolation polynomial p,(X) of degree n and its error formula are for
dataset {(Xg, fo), (X4, ). .- (X, fr)}

X—Xj

Pn (X) — Zie{O,l,...,n} fiHje{O,l,...i—l,i—l—l,...,n} X — X
| J

1
(n+1)!

f(X) = pp(X) = f(n+) ()Mo, .np(X—%) -

Notice the removal of index 1 In the product term inside the sum of the interpolation

formula.
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LINEAR SHAPE FUNCTIONS

Piecewise linear approximation in one dimension is continuous in € and a first order

polynomial inside the elements. In element Q°

Approximation:

Nodal values:

Shape functions:

u:NTa

a={u uz}T

-
~~o
-
SS
-

-
SS
-
SS
~
-

Piecewise linear approximation is the simplest choice e.g. for the bar model.
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e The method based on combining given polynomials gives (use of the scaled coordinate

& simplifies the expressions)

-1
1 1 1 Xo =1([1 Xy — X 1-
N = _1x _Lp%emx|_J=e  where £=2
X Xo X| hi—=x 1][x] h|x=X & h
e The virtual work expression (e.g. of the bar model) contains integrals of the shape

functions in certain combinations. The most common are (here Q° =]x,X,[ , dQ = dx,

and h :l X2 _Xl |)

1 2 1 T 1 -1
| e NdQ =1 | e NNTdo =D cand INdN "y -1 .
Q 2 11" Yo 6|1 2 Q° dx dx h|-1 1
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QUADRATIC SHAPE FUNCTIONS

Piecewise quadratic approximation in one dimension is continuous in €2 and a second order

polynomial inside the elements. In element Q° U
==~ ”2
e
; . T “~s\ Z/l3
Approximation: u=N"a DAY
T @ - 9
Nodal values: a={u; u, us} . 5 3
N
(N;)  [1-3&+2&2
: X XN X
Shape functions: N=<N, =4 4£(1-¢) ¢, ézﬁ N I N3,/ Y
/ \\\ /,, N
\ N3) L §(2§ _1) ) ‘:- \\,‘\/’ \\.

- -~ -
e m e a==" S

More nodes can be used to generate higher order approximations!
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e Derivation based on the Lagrange interpolation polynomials is convenient in the one-
dimensional case. The idea is to write a polynomial vanishing on some set of points and

scale the expression to take the value one at a certain point. Interms of £=x/h

_(E-Y2(E-Y) o e _ E-0¢-) Ll
Nl_(o—l/z)(o—l)_(% D(e 1) and N (1/2-0)(1/2-1) dell-g) et

e Some integrals of the virtual work expression are given by

h hfl\ h‘4 2 1 N aNT 7 -8 1
h h
j Ndx =—44% j NNTdx=—1| 2 16 2 |, j ANAN" 11 g 16 _g]|
0 6 0 30 0 dx dx 3h
1) 12 4| 1 -8 7
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EXAMPLE 4.7 Find the virtual work expression oW = jQ owdQ of a bar element, when
OWgn =—(dou /dx)EA(du/ dx) +ouf,, the shape functions are quadratic (a three-node
element) and the force per unit length is (a) f, =constant (b) f, = F,0(&—1/2). The length

of the element is h.

Answer:
(Suy)'  [7 -8 17 (uy) 1)

(@) OW =—{0Uyy ¢ (% -8 16 -8 |{Uy» >—%< 4 %)
[OUx3 | 1 -8 7 ||uys] 1]
(Sug)'  [7 -8 17(uy

(b) OW =—<0Uys ¢ (% —8 16 -8 |JUyp r—Fy<1?)
10Ux3 ) |1 =8 7 | {Uys, g

Week 47-37



The quadratic shape functions of a three-node element can be obtained e.g. by using the

Lagrange interpolation polynomials (£ = x/h)

s a ( 2\ e 2 e 3
N, |1=3x/h+2(x/h) N dN, / dx . ~3+4(x/h)
N=49Ny =+ 4x/h—4(x/h)2 S d_:<dN2/dX>:F< 4-8(x/h) ¢.
X
N3] 2(x/h)2 —x/h (N3 /dx] | 4(x/h)-1 |

Approximation, its derivative and variations needed in the virtual work density are

T,

q (leldX\T (qu\ 45 (5UX1\T (leldX\ (5UX1\ Nl\
d—u:<dN2/dX> SUyo ¢, d—u:<5uX2> AN, /dxp, and Su=40Uyr ¢+ ¢ N .
X X
deg/dX} \UXB, ké‘uXB, \dNB/dX) ké‘uXB, \NB,

When the approximation is substituted there, virtual work density takes the form
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| dN; dN;  dNp dN,  dNg dNg
. VT dx dx dx dx dx dx |, le\
dN5 dN; dN, dN, dN, dNj

dx dx dx dx dx dx
J dN3 dN; dNg dN, dNg dNg |(Uxe) L
| dx dx dx dx dx dx

§W:—< §UX2 e (EA

. _ h
e Virtual work of the external volume force is given by integral oW :jo owdx. If

f, =constant or f, = F,0(& -1/2), the outcome is

T —

(Suy | 7 -8 1 |[uy (1
EA f.h
OW =—40Uy> ¢ (3_h -8 16 -8 <UX2>_T<4>) €
ké‘uXB, i 1 -8 7 ] \UXB, kl)
' N T [ 1 3\ ' N
§UX1 EA /{ -8 1 Uyq 0
OW =—40Uy> ¢ (3_h —8 16 -8 |{Uyp r—Fy<1lp) €
ké‘uXB, i 1 -8 7 ] \UXB, V)
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CUBIC SHAPE FUNCTIONS

Piecewise cubic approximation has continuous derivatives up to the first order in Q and is

a third order polynomial inside the elements.

Approximation: u=N'a Uyq u "~«._ J
S~ 20
| Uo1
Nodal values: ~ a={u; duj/dx{u, du,/dx] . I
1 2
) , . o--_ N0 N2o __,
(Nyg] |@=¢)"A+25) IREN e
N \v/
N h(l-&)? L1 2
Shape functions: N=J-2tl_ de)e LTt Ty
N2g (3—2&)&2 e e
U e I S
R O (GRS

In xz —plane bending u=u, and du/dx=-6

y ]

In Xy —plane u =u
Week 47-40
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e In one-dimensional case, the brute force approach works. Let us collect the coefficients

of the monomials of the shape functions into a matrix, and use the definition of the shape

functions

Nyo) (1] ‘1i0i0j0] |10 0 |

N X 0100 01 1

LA o = -[A 2 | =
20 X 0Oi0i1:i0 0 0 h 2h

(N2t | X3 01010¢1) 0o 0 | h i3n®
Nl [10 1 0T (1] [(-1+&)(1+2¢)

N 0O 1 h 1 X . 2

4 11>: 5 1 0 =1 h( 1+§) § > where gzi
NZO 0 0 h 2h X (3_25)52 h

kN21 i O O h3 3h2_ \XBJ h(—l+§)§2
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LINEAR SHAPE FUNCTIONS

Piecewise linear approximation in two-dimension is continuous in €2 and linear inside the

elements of triangle shape. In element Q°

Approximation: u = N'a

T
Nodal values: a={u; u, us}

(1 1 1]7(1
Shape functions: N=| X X, X3| §X;
Y1 Y2 Y3 (Y

Triangle element is the simplest element in two dimensions. Division of any 2D domain into

triangles is always possible, which makes the element quite useful.

Week 47-42



o Let N={N; N, N3}T be the shape functions taking the value one at the vertices

X1 = (X, Y1), Xo =(X5,Y5) and X3 = (X3, y3), respectively. Then

( XpY = X3y =Xy + X3¥ + X3 — X ¥3
"1 1 1 TY () [T XY T XY T XY XY3 — XoYs
N=|X X X3| {Xb=1 XY XY XY X X3 XY | &
Vi Vo va| |y X2Y1 = X3Y1 = XYo T X3Yo T X1Y3 = X2 Y3
) ) XY= XY —XYp + X1 T Xyp — XY
(X2 Y1 = X3Y1 =X Yo + X3Yo + X1 Y3 = X2 Y3 |

e Some integrals needed, e.g., in the virtual work expression of the thin slab model, are

1 2 1 1]
[ . NdQ =210, [ NNTdo=21 2 1]
Q 3 Q 12

1 11 2
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BI-LINEAR SHAPE FUNCTIONS

Bilinear approximation in two dimensions is continuous on Q and linear with respect to

both coordinates inside the elements of rectangular shape. In element Q° and notation

§=xlhy, n=ylhy

Approximation: u = N'a

T
Nodal values: a={u; U, Uz Uy

(1-&)(A-n))
c-mn)
1-S)n

. s

Shape functions: N =<

The ordering of the node numbers varies in literature.
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LINEAR SHAPE FUNCTIONS

Piecewise linear approximation in three dimensions is continuous in Q and a linear

polynomial inside the tetrahedron elements. In a typical element Q°

(1 1 1 1] (1
X1 Xo Xa X X
Shape functions: N = L 7278 74
Y1 Y2 Y3 VY4 y
Z

_Zl 22 23 24_ | Z)

Tetrahedron is the simplest element in three dimensions. Division of any 3D domain into

tetrahedrons is always possible, which makes also this element quite useful in practice.
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TRI-LINEAR SHAPE FUNCTIONS FOR A BODY

Approximation is continuous on Q and tri-linear inside an element. In a typical element and

with notations & = (x—xq) /' hy, 7=(y—-y;)/hy,and & =(z-2;)/h,,

(1-8)A-n)A-2)]
S1-mA-7)
1-S5n-7)

sn(l-¢)
1-5)A-n)¢

sl-n)¢g

1-S)ng

! sng

Bi-linear and tri-linear shape functions of 2D and 3D cases are products of the linear shape

functions of the 1D case.
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EXAMPLE. Consider the structure of the figure consisting of triangle and quadrilateral

elements. Write down the shape functions of the elements in the xy —coordinates (the sum

of the shape functions of an element is always 1).

hexy y (2h—x)(h-y)
—hY(h =
Answer N1:£< X > N2 :£< X+Yy—hp, NB:%< (x=h)th-Yy) > N4:?
h y h hoy h (x—=h)y
\ \ J | (Zh_X)y
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