MEC-E1050 Finite Element Method in Solid, week 47/2021

1. Consider a bar element when A and E are constants 1.
and f,=@0-x/h)f,+(x/h)f,, is the linear
distributed force. Derive the virtual work expression
of linear bar element. Use the virtual work density
expression owgn =—(dou / dx)EA(du / dx) + ouf, and
approximation u = (1—-x/h)uy, +(x/h)uys.
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2. Derive the virtual work expression of a torsion bar,
when J and m, are constants and shear modulus G

is linear and defined by the nodal values G; and G, .

Use approximation ¢ =(1-x/h)é,+(x/h)b,.

Virtual work density of the torsion bar model is
oW =—(dog [ dx)GJ (dg / dx) + opm, .
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3. Consider a bar element having constant A and f,
and a piecewise constant E as shown in the figure.
Derive the virtual work expression of the element by
using the wvirtual work density expression
oW =—(dou/dx)EA(du/dx) +ouf, of the bar
model and interpolant u = (1—x/h)uy +(x/h)uy,
to the nodal displacements.
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4. Consider the torsion bar (1) of the figure loaded by torque M (2) acting on
the free end. Determine the rotation &y, at the free end, if the polar g @
moment J is constant and shear modulus G varies linearly so that the
values at the nodes are G; and G, . Start with the virtual work density
oW =—(dog / dx)GJ (d¢/ dx) + dpm, and use linear approximation to
rotation (a linear two-node element). —<_|_' @
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Consider a bar of length L loaded by its own weight (figure). Determine the
displacement uy, at the free end. Start with the virtual work density
expression  dWgq =—(dou/dx)EA(du/dx)+ouf, and approximation
u=@-x/L)uy +(x/L)uy,,. Cross-sectional area A, acceleration by
gravity g, and material properties E and p are constants.
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Structural coordinate system and the bar shown are
rotating in a plane with a constant angular speed w; = ®.
Material properties E, p and the cross-sectional area A
are constants. Determine the nodal displacement uy , at
the free end using just one linear element. The volume
force. due to the rotation is given by
f =—pa=—pax(&xF) inwhich @=wk and F=xi .
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Consider the bar of the figure loaded by its own weight. Determine the ~ L/2 & 1 g
displacement of the free end with one element. Use virtual work density 2
expression oW =—(dou/dx)EA(du/dx)+ouf, and  quadratic
approximation U = (1—3& +2&2)u,q +4&(1- E)uyp +£(25-1)uyg in
which & = x/ L. Cross-sectional area of the bar A, acceleration by gravity
g, and material properties E and p are constants. vy 3
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Determine the rotation &, of the beam shown at the
support of the right end which allows rotation but not
transverse displacement. Young’s modulus E of the °
material and second moment of cross-section 1, =1 are
constants. Use the virtual work density of beam bending Z
mode  Swg, =—(d%sw/ dx?)El, (d?w/dx?) +Swf, and
cubic approximation to the transverse displacement.
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10.

Deduce the shape functions of the triangle elements 1 and 2 shown
in the figure in terms of the (material) xy — coordinates.
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Using a linear interpolant to the nodal values, determine

X 8&’ 8&’ and I:j o U, dQ,
oX oy Q

for the element shown. The nodal values of the displacement
component uy(X,y) are uy; =a, Uy, =—a, and Uy3 =2a.
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Consider a bar element when A and E are constants and fe
fy =@-x/h)f +(x/h)f,, is the linear distributed
force. Derive the virtual work expression of linear bar
element. Use the virtual work density expression
oW =—(dou/dx)EA(du / dx) + ouf, and approximation
U= (1-x/h)uy +(x/h)uy,.

Solution

The concise representation of the element contribution consists of a virtual work density expression
and approximations to the displacement and rotation components. Approximations are first
substituted into the density expression which is followed by integration over the domain occupied by
the element (line segment, triangle etc.). Here the two building blocks are

dou du X X
OWo =———EA—+6ufy, and u=1—-)Uy; +—Uy».
Q dx dx X ( h) x1 h X2

The quantities needed in the virtual work density are the axial displacement, variation of the axial
displacement, and variation of the derivative of the axial displacement
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When the approximation is substituted there, virtual work densities of the internal and external forces
take the forms

.
syt 40U du [y EA/h?  —EA/h® |[ug
Codd due |—earn? Earn? [lue)

a8 — st _{5ux1}T{ (1-x/h)? (1x/h)(x/h)fo1}

SUx2] | @=x/h)(x/h) (x/h)? fx2

Integration over the element gives the virtual work expressions of the internal and external forces
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Virtual work expression of bar element is the sum of internal and external parts
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Derive the virtual work expression of a torsion bar, when m
J and m, are constants and shear modulus G is linear
and defined by the nodal values G; and G,. Use
approximation ¢ = (1-x/h)6,, + (x/h)6y, . Virtual work
density of  the  torsion bar  model §
oW =—0(dg/dx)GJ (d¢ / dx) + ogm,, .

Solution
Virtual work density of the torsion bar model

SWe = SWTE + SWE = _ 49 4 O'—¢+5¢mX
dx dx

depends on the polar moment of area J, shear modulus G, and moment per unit length m, .
Expression is valid also when data are not constant. Virtual work expression (element contribution)

oW = [ SwadQ
is integral of the density over the domain Q =]0, h[ occupied by the element.

Assuming that the origin of the material coordinate system is placed at node 1, linear approximation
(and its derivatives as well as their variations) to the axial rotation ¢ take the forms

Cfi-xihT[8q] dg 11" 64 55| T{1-x/h| dop [0 11
?=1 xih 0 dx hl1] 16a]" " |66, x/h | dx  |86,] h|1]

As the shear modulus of the material is known to be linear and defined by its nodal values
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When the approximation to ¢ and expression for G are substituted there, virtual work densities of
the internal and external forces take the forms
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Virtual work expressions are integrals of the virtual work densities over the domain Q occupied by
the element (here Q =]0,h[)
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Virtual work expression of the element is the sum of internal and external parts
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Consider a bar element having constant A and f, and
a piecewise constant E as shown in the figure. Derive
the virtual work expression of the element by using the
virtual work density expression
oW =—(dou/dx)EA(du / dx) + ouf, of the bar model
and interpolant u=(1—-x/h)uy +(x/h)uy, to the
nodal displacements.

Solution
Virtual work densities of the internal and external distributed forces of the bar model

i dou du
Swit = 2 EA— and owSt = suf
Q dx  dx Q X

depend on the cross-sectional area A, Young’s modulus E, and force per unit length f, . Expressions
are valid also when the data (A, E, f, ) are not constants. Virtual work expressions

oW = [ owdidQ and oW = [ swglde

are integrals of the densities over the domain ©Q=]0,h[. As a virtual work expression of the bar

element with a varying Young’s modulus is not available in formulae collection, it needs to be
calculated from scratch. Here

_ El 0<x<h/2
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Assuming that the origin of the material coordinate system is placed at node 1, linear approximation
(and its derivatives as well as their variations) to the axial displacement ¢ and Young’s modulus E

are given by
T T
1-x/h -1
U= x/ Uyq - d_uzi Uyq 5o
x/h Uyo dx hll1l Uyo

T T
SU = §UX1 1-x/h and dﬂ: §UX1 i -1 .
sug| | x/h d |sun| hlt

When the approximation to u and the expression of E are substituted there, virtual work densities
of the internal and external forces take the forms
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Virtual work expressions are integrals of the virtual work densities over the domain Q occupied by
the element. Here Q2 =]0,h[ needs to be divided into two parts since the integrand is piecewise
constant
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Consider the torsion bar (1) of the figure loaded by torque M (2) acting on the
free end. Determine the rotation &y, at the free end, if the polar moment J 4
is constant and shear modulus G varies linearly so that the values at the nodes L @
are G, and G,. Start with the virtual work density
oW =—0(dg/dx)GJI(d¢/dx)+Jgm, and use linear approximation to
rotation (a linear two-node element).

Solution X, X
Virtual work densities of the internal and external distributed forces of the
torsion bar model

int __dog .. dg ext
swilt = ——2.GJ == and sSwST = Sgm,
Q dx dx Q y

depend on the polar moment J, shear modulus G, and moment per unit length m, . Virtual work
expression is obtained as integrals

oW =W + oWt where oW'™ = [ ow'dQ and oWt = [ owg'dQ

over the element. In this case Q =]0, L[ (just one element of length L) and dQ =dx . As “ready-to-
use” virtual work expression of a torsion bar with varying shear modulus is not available in the
formulae collection of the course, it needs to be calculated by using the virtual work density and
approximation/interpolant to rotation.

Assuming that the origin of the material coordinate system is placed at node 1 and coincides with the
structural system (for simplicity), linear approximation to the axial rotation ¢ and the expression of
the shear modulus G are
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When the approximationto ¢ and the expression of the shear modulus G are substituted there, virtual
work density of internal forces becomes (external part coming from the distributed moment vanishes
here)

Swilt = ddi¢GJ ‘;4”_—159 A[0-2)6,+36,19 7 9X2

Virtual work expression is the integral of virtual work density over domain Q occupied by element
(here QQ=]0,L[)

SWint = j 5w'"‘dx———5ex2( G +— GZ)J 9x2_—549X2



G1+G2 J

1
é\N 2—59)(2 2 Iexz.

Virtual work expression of the point force/moment is available in the formulae collection (the
definition of work can also be used)
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Virtual work expression of the structure is sum of the element contributions

SW = oW+ oW ? :—59x2(61;G2%9x2+M).

Principle of virtual work oW =0 Voéa and the fundamental lemma of variation calculus
S5a'F=0 Véa < F=0 imply
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Consider a bar of length L loaded by its own weight (figure). Determine the
displacement uy, at the free end. Start with the virtual work density
expression oW =—(dou/dx)EA(du/dx)+ouf, and  approximation
u=(@@-x/L)uy +(x/L)uy,.Cross-sectional area A, acceleration by gravity g @
and material properties E and p are constants.

Solution
The concise representation of the element contribution consists of a virtual |
work density expression and approximations to the displacement and rotation ~ ~ T
components. Approximations are just substituted into the density expression

followed by integration over the domain occupied by the element (line segment, triangle etc.). Here
the two building blocks are

X

dou du X X
OWo =———EA—+6uf, and u=(1—-——)uy +—U,».
Q dx dx X ( L) x1 L X2

The quantities needed in the virtual work density are the axial displacement, variation of the axial
displacement, and variation of the derivative of the axial displacement
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When the approximation is substituted there, virtual work density expression of the bar model takes
the form
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Finally, integration over the element gives the virtual work expression of the bar element
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Finding the displacement of the free end follows the usual lines. Here, f, = pgA, u,; =uy; =0, and

Uyp =Ux2
T
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Structural coordinate system and the bar shown are rotating in
a plane with a constant angular speed @w; =w. Material
properties E, p and the cross-sectional area A are constants.
Determine the nodal displacement uy , at the free end using
just one linear element. The volume force due to the rotation is
given by f =—pa=—paox(@xF) in which @&=wk and
F=xi.

Solution
Virtual work densities of the internal and external distributed forces of the bar model
dou du ext

OWo = ———EA—+ ouf and owg =ouf
Q dx dx X Q X

depend on the cross-sectional area A, Young’s modulus E, and external force per unit length f, .
Virtual work expressions

oW = [ owgd'dQ and oW = [ swglde

are integrals of the densities over the domain Q =]0, h[ occupied by the element. Principle of virtual
work corresponds to equilibrium equations that are valid in their simple form (F =ma with a=0
etc.) in an inertial frame of reference. The correct form for a coordinate system which rotates with a
constant angular speed & in the manner shown in the figure (F = m[d, + &x (@xF)] with & =0)
gives rise to a force per unit volume in the same manner as gravity is acting on the body. In the present
case, (material system and structural system coincide) force per unit length in the direction of the x —
axis takes the form

f, =T -1 =—pAlwk x (ak x XT)]-T=pAw2X.

Virtual work expression of bar element with a varying distributed external force is not available in
formulae collection and it needs to be calculated from scratch. According to the formulae collection

.
u={l_§} {”Xl} inwhich &=X.
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Assuming that the origin of the material coordinate system is placed at node 1 and coincides with the
structural system, approximation to the axial displacement and its derivatives and variations are (In
hand calculations, it is advantageous to use information about boundary conditions etc. as soon as
possible.)
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When the approximation to u is substituted there, virtual work densities of the internal and external
forces take the forms

Swint :—%5Ux2EA%Ux2 and  Swet Z%&IXZPAWZX-

Virtual work expressions are integrals of the densities over the domain Q occupied by the element
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SWS = [ 7 oW Mdx = Suy 5 % L2pAn?.
Virtual work expression of the element is sum of the internal and external parts
SW = WMt 4 sw &t = —5ux2(%ux2 —% L2pAn?).

Principle of virtual work oW =0 Voa and the fundamental lemma of variation calculus in the form
S5a'R=0 Vda < R=0 imply
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Consider the bar of the figure loaded by its own weight. Determine the
displacement of the free end with one element. Use virtual work density /2 l g
expression oW =—o(du/ dx)EA(du / dx) + ouf, and quadratic 9 ;;5
approximation U= (1-3& +2E2) Uy +4E(1- &)Uy + E(26 1)Uy in —_— [
which & =x/L. Cross-sectional area of the bar A, acceleration by gravity N
g, and material properties E and p are constants. L/2

| 3|
Solution — Tx «
Virtual work densities of the internal and external distributed forces of the ’
bar model
Swit = _dd% EAS—;J( and SwWST = suf,

depend on the cross-sectional area A, Young’s modulus E, and force per unit length f,. Virtual
work expressions

int _ int ext _ ext
oW = [ owi'dQ and oWt = | Sugide
are obtained as integrals over the domain Q =]0, h[ occupied by the element (here h=L).

Virtual work expression of the bar element, when approximation is quadratic (a three-node element),
is not available in formulae collection and it needs to be calculated from scratch. In hand calculations,
it is advantageous to use information about boundary conditions etc. as soon as possible. In the present
case, force per unit length is due to the weight

fy = poA.

Assuming that the origin of the material coordinate system is placed at node 1 and coincides with the
structural system, quadratic approximation to the axial displacement u (see the formula collection)
and its derivatives and variations are given by
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When the approximation to u is substituted there, virtual work densities of the internal and external
forces become

st 00U o du Uy, T 1 [4L-8x cp L [AL-8x T (uys -
@ dx dx ou 12| 4x—-L 12| 4x—L u
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Virtual work expressions are integrals of the virtual work densities over the domain Q occupied by
the element

Swint :IOL swiltdx =

éwimz_{auxz}TEJL (4L-8x)2 (4L -8x)(4x—L) dx{uxz}
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Virtual work expression of the element is the sum of internal and external parts

T
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SW = swint 4 syext — _JoUxa (E x2| _pPYAL ).
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Principle of virtual work oW =0 Voa and the fundamental lemma of variation calculus in the form
5a'R=0 Vda < R=0 imply
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Determine the rotation &, of the beam shown at the support of
the right end which allows rotation but not transverse
displacement. Young’s modulus E of the material and second *:
moment of cross-section Iy, =1 are constants. Use the virtual
work density of beam bending mode
SWq =-5(d?w/ dx?)Ely (d®w/dx?)+Swf,  and  cubic
approximation to the transverse displacement.

Solution
In the xz —plane problem bending problem, when x-axis is chosen to coincide with the neutral axis,
virtual work densities of the beam bending mode are

d?sw_,  d%w

int _ ext _
oW =— Bl Elyy Il and owg =owf,.

Approximation is the first thing to be considered. The left end of the beam is clamped and the right
end support does not allow transverse displacement. As only 6y, =&, is non-zero, approximation
tow simplifies into the form (see the formulae collection for the cubic beam bending approximation)
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When the approximation is substituted there, virtual work density takes the form (external distributed
force vanishes)
d2sw_, d?

w El 2
SWe, = — El =50y — 6, (2L —6%)2.
Q dX2 vy dX2 @2 L4 @2

Integration over the domain Q =]0,L[ gives the virtual work expressions (beam is considered as
element 1)

L
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The external moment gives the contribution (element 2)

SW2=56,,M .



Principle of virtual work oW =5W!+oW?=0 Vsa and the fundamental lemma of variation
calculus imply the solution
1 ML
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Derive the shape functions of the triangle elements 1 and 2 shown in
the figure in terms of the (material) Xy — coordinates.

Solution
Shape functions of the linear triangle element are given by the simple formula

Y1 Y2 Y3 y

in which the subscripts refer to coordinates of the three nodes. Order of the node numbers does not
matter:

1 1 171 0 0 h?| (1 0 -1 -1](1 —y—X
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Using a linear interpolant to the nodal values, determine -

A
Uy, 8&’ %, and I:j . U, dQ, h / \
ox oy Q / \
/
/ \
for the element shown. The nodal values of the displacement ¢ /1 Q
component uy(X,y) are uy; =a, Uy, =—a, and Uy3 =2a. h/2 h/2
| —>

Solution
The shape functions of a three-node triangular element in xy —coordinates are linear and therefore of
the form

4d; 1 X1 Y194 a» ag 100
Ni =a +bix+cy={1 x yjibjt = |1 Xo Yo |lby by b3(=[0 10
Ci 1 X3 Y31{|CG Co C3 001

as the basis functions should take the value 1 at their own nodes and vanish at all the other nodes.
The closed form solution to the shape functions is given by

N,) & a, a]' (1) [1 1 1
Noe=|b By B3| iXxe=|X X X3
N3] [& C C3f Y) |1 Y2 V3

-1
X3(Y = Y2) + X(Y2 = ¥3) + X (=Y + Y3)

=l X3(=Y+Yp)+ X (Y —Y3) +X(=y; +Y3)
Xo (Y= Y1)+ X(Y1 = Y2) + X (=Y +Y2)

< X B

where det =—X,y; + X3Y1 + X Y2 — X3Y2 — X Y3+ Xo¥3. Often, the linear shape functions can be
deduced directly from a figure. However, the generic expressions work also when intuition does not:

X1 -h/2 Y1 0 Ny h—-2x-y
Xpp=4h/2} and <Jy,;=40: < <N, :% h+2x-y.,.
X3 0 y3) (b N3 2y

With the given nodal values, element interpolant (approximation) becomes

Np| [ux L Xy 1 y y

Uy =4 Nt Uy :(E_E_Zh)aJr(Z I 2h)( a)+ 2a=22 (y x). €
N3 [Ux3

Thus

Ouy 28 €
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