
Lecture 10:
Plasma equilibrium & (in-)stability



Today’s menu
• Equilibrium and force balance
• Plasma beta
• Z-pinch
• Bennett relation
• Screw-pinch
• Magnetic safety factor and shear
• Grad-Shafranov equation
• Eigenvalue problem for instabilities
• Energy principle for instabilities
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The various ways of being in equilibium
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Qualitatively
different equilibria
depending on how
likely you are to
stay in it – with
small or large
perturbations



Equilibrium and force balance
Equilibrium no acceleration: 𝜕

𝜕𝑡
= 0

Analyze the simpliest magnetic equilibrium: 𝑬 = 0,𝒗 ≈ 0, isothermal
 0 = −𝛻𝑝 + 𝒋 × 𝑩
And we get the force balance between kinetic and magnetic forces:

𝛻𝑝 = 𝒋 × 𝑩

Additional information: 𝒋 ⊥ 𝛻𝑝 ⊥ 𝑩
i.e., both the confining magnetic field and current are perpendicular to the
pressure gradient that they are holding up.
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Confining current
Note: the force balance gives the relationships for 𝛻𝑝, 𝒋,𝑩.
What is the current needed to hold up 𝛻𝑝 in given magnetic field 𝑩?

𝒋 = 𝒋⊥ = 𝑩×𝛻𝑝
𝐵2

= (𝑇𝑒 + 𝑇𝑖)
𝑩×𝛻𝑛
𝐵2

… and we have re-discovered the diamagnetic current !
Typical of plasma physics: the same observed phenomenon can be obtained
both from the particle picture and fluid picture – with different interpretation:
• Particle picture: with 𝛻𝑛 ≠ 0 the gyro motions do not cancel out
• Fluid picture: 𝛻𝑝 generates 𝒋⊥ so that the 𝒋⊥ × 𝑩 exactly balances the

kinetic pressure on each fluid element
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Magnetic (counter-) forces
But the current and magnetic field are also related by Maxwell’s equations:

𝛻 × 𝑩 = 𝜇0𝒋

 𝛻𝑝 = 1
𝜇0

𝛻 × 𝑩 × 𝑩
𝛻𝑝 = −𝛻 𝐵2 2𝜇0⁄ + (𝐵2 𝜇0⁄ )𝜿

where 𝜿 is the field line curvature, 𝜿 = 𝑩
𝐵
⋅ 𝛻(𝑩

𝐵
), with | 𝜿 | = 1/𝑅𝑐 .

So the magnetic field exerts force to plasma in two ways:
• If the plasma tries to compress the field lines restoring force via

magnetic pressure: 𝐵2

2𝜇0
• If the plasma tries to bend the field lines restoring force via field line

tension: (𝐵2 𝜇0⁄ )𝜿
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Balancing the pressures

The field line tension that works to straighten out the field lines becomes
important with instabilities, where the plasma tries to get out of control by
(un-)bending field lines.
For ’straight’ plasmas the equilibrium condition becomes

𝛻(𝑝 +
𝐵2

2𝜇0
) = 0

 𝑝 + 𝐵2

2𝜇0
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

 In equilibrium plasmas, the sum of kinetic and magnetic pressures is constant!
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Plasma beta
So if we want to have a pressure gradient (= plasma
confinement), the magnetic field strength has to diminish
as we go inward!
How does that happen???

Via diamagnetic effect.
The strength of the diamagnetic effect is given by a
parameter called the plasma beta:

𝛽 ≡
∑𝑛𝑗𝑇𝑗
𝐵2/2𝜇0

If 𝛽 is NOT small, we cannot assume constant 𝐵.
Later: 𝛽 is also a measure for the performance of 𝐵 field.

21.11.2021
8

Simplest case:
axial field



So how would a real equilibrium look like?

Again, start with the simpliest geometry: linear device

But axial field is clearly no good due to unavoidable end losses

 let’s start pinching …
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The z-pinch
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A different magnetic bottle
Since axial field is out of question, let’s get going with axial
current:

𝑗 = 𝑗𝑧 → 𝐵 = 𝐵𝜃
Note: even though we now deal with cylindrical symmetry, we
shall use the toroidal nomenclature:

Polar/azimuthal (angle, field)  poloidal (angle, field)

Reason: in the first approximation, many phenomena in large-
aspect ratio tokamaks are analyzed in the limit 𝐴 −> ∞, and
then torus −> cylinder: 𝑅𝜑 → 𝑧
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Magnetic field in z-pinch
Ampere’s law in z-pinch: 𝜇0𝑗 = 1

𝑟
𝑑
𝑑𝑟
𝑟𝐵𝜃 = 1

𝑟
𝐵𝜃 + 𝑑𝐵𝜃

𝑑𝑟

Assume uniform current density, 𝑗𝑧 = 𝑐𝑜𝑛𝑠𝑡 = 𝑗0 , 𝑑𝑆 = 𝑟𝑑𝜃𝑑𝑟 = 2𝜋𝑟𝑑𝑟

• 𝑟 > 𝑎: 𝐼𝑝 𝑟 ≡ 𝐼𝑝(𝑎) = 𝑗0𝜋𝑎2 𝐵𝜃 = 𝜇0𝐼𝑝
2𝜋𝑟

• 𝑟 < 𝑎: 𝑑
𝑑𝑟
𝑟𝐵θ = 𝜇0𝑗0𝑟  𝑟𝐵θ = 1

2
𝜇0𝑗0𝑟2 + 𝐶 ; B.C.@ 𝑟 = 0 → 𝐶 = 0

𝐵𝜃 =
𝜇0𝐼𝑝
2𝜋𝑟

, 𝑤ℎ𝑒𝑛 𝑟 > 𝑎

𝐵𝜃 =
𝜇0𝐼𝑝
2𝜋𝑎2

𝑟, 𝑤ℎ𝑒𝑛 𝑟 < 𝑎
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Pressure profile in z-pinch

Force balance: 𝑑𝑝
𝑑𝑟

= −𝑗𝑧𝐵𝜃 = − 1
𝜇0𝑟

𝐵𝜃2 −
1
2𝜇0

𝑑𝐵𝜃
2

𝑑𝑟

𝑟 < 𝑎: 𝐵𝜃 = 𝜇0𝐼𝑝
2𝜋𝑎2

𝑟 → 𝑑𝐵𝜃
2

𝑑𝑟
= 𝜇0𝐼𝑝

2𝜋𝑎2
2
2𝑟


𝑑𝑝
𝑑𝑟

= − 𝜇0𝐼𝑝
2𝜋𝑎2

2 𝑟
𝜇0

+ 𝑟
𝜇0

= − 𝜇0𝐼𝑝
2𝜋𝑎2

2 2𝑟
𝜇0

 𝑝 𝑟 = − 𝜇0𝐼𝑝
2𝜋𝑎2

2 𝑟2

𝜇0
+ 𝑐𝑜𝑛𝑠𝑡. ;   B.C: 𝑝 𝑟 = 𝑎 = 0 → 𝑐𝑜𝑛𝑠𝑡 = 𝜇0𝐼𝑝2

2𝜋𝑎 2

𝑝 =
𝜇0𝐼𝑝2

2𝜋𝑎 2 1 −
𝑟
𝑎

2
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Plasma beta in z-pinch
Let us calculate the volume-averaged pressure:

< 𝑝 > =
1
𝑉
න𝑝𝑑𝑉

𝑉 = 𝜋𝑎2𝐿 , 𝑑𝑉 = 2𝜋𝑟𝑑𝑟𝑑𝑧 < 𝑝 > = 2
𝑎2 ∫ 𝑝(𝑟)𝑟𝑑𝑟𝑎

0 

< 𝑝 > =
𝜇0𝐼𝑝2

4𝜋2𝑎2
1
2
≡
𝐵𝜃2(𝑟 = 𝑎)

2𝜇0

 For z-pinch 𝛽 = <𝑝>
𝐵𝜃
2 2𝜇0⁄ = 1 !!!

 z-pinch utilizes the poloidal magnetic field with 100% efficiency.
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Bennett relation

The relation < 𝑝 > = 𝜇0
2𝜋𝑎 2

1
2
𝐼𝑝2 is called the Bennett relation.

Physics of the Bennett relation:
the good performance comes with a price …
• If the total current 𝐼𝑝 and averaged pressure < 𝑝 > are fixed, the plasma

can exist only at a single radius value 𝑎!
 if you heat the plasma (= increase < 𝑝 > ), the plasma will pinch !

Isn’t a small plasma a good thing?
Big magnets are expensive…
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Pinching in imperfect world
= first glimpse at instabilities …
Any small perturbation can make the plasma in z-pinch unstable.
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Sausage instability:
If the contraction of
plasma is not
homogeneous, the
pressure at ’waist line’
is stronger, pinching it
further perturbation
grows.

Kink instability:
If the cylinder is
ever so slightly
bent, the magnetic
pressure is smaller
at the kinking part
 perturbation
grows.



Now is the time to revive the so-far-neglected term in our force balance

𝛻𝑝 = −𝛻 𝐵2 2𝜇0⁄ + (𝐵2 𝜇0⁄ )𝜿

 if we introduce an axial field in addition to the poloidal field, this axial field
will make the cylinder stiff = ensure stability of the z-pinch plasma.

To have a substantial restoring force on field lines, the stabilizing axial field
has to be larger than the confining poloidal field.

… the field lines are now helical and we get a configuration called ..
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The screw-pinch
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The ’straight tokamak’ …
• Drive an axial current by, e.g., axial electric field
 poloidal field 𝐵𝜃
• Wind coils poloidally around the plasma
 axial magnetic field 𝐵𝑧0 ≈ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
But that is not all:
A pinching plasma implies radial motion (𝒗𝑟)

 𝒗𝑟 × 𝐵𝑧 → 𝑗𝜃  → additional axial field: 𝑑𝐵𝑧1
𝑑𝑟

= 𝜇0𝑗𝜃
Physical interpretation:
• Incompressibility of the axial magnetic field (ideal MHD)
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Get ’real’ …
A uniform current profile is not very realistic (HW)
 let’s take a simple form where the current profile peaks at the center:

𝑗𝑧 = 𝑗0 1 −
𝑟2

𝑎2

α

Then the plasma current inside a radius 𝑟 becomes (HW)

𝐼𝑝 𝑟 = 𝑗0
𝜋𝑎2

𝛼 + 1
1− 1 −

𝑟2

𝑎2

α+1

And the confining poloidal magnetic field is (HW)

𝐵𝜃(𝑟) =
𝜋𝑎2

𝛼 + 1
𝜇0𝑗0
2𝜋𝑟

1 − 1 −
𝑟2

𝑎2

α+1
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Force balance & plasma beta are screwed
The force balance thus becomes

𝑑𝑝
𝑑𝑟

= −
1
𝜇0𝑟

𝐵𝜃2 −
1

2𝜇0
𝑑
𝑑𝑟

𝐵𝜃2 + 𝐵𝑧2

where 𝐵𝑧2 = 𝐵𝑧02 + 𝐵𝑧12 .

While 𝐵𝑧0 and 𝐵𝜃 are externally imposed, 𝐵𝑧1 is determined by the plasma.
 additional degree of freedom
 equilibrium configuration can be found for any minor radius 𝑎 !
But there is a price to pay:
Now the magnetic pressure has also a contribution from the axial field 𝐵𝑧0
that does not contribute to confinement 𝛽 < 1.
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Helical field lines & magnetic safety factor
Suddenly the field lines are screwed = helical
The field line pitch is given by the so-called safety factor,

𝑞 ≡
# 𝑜𝑓 𝑡𝑜𝑟𝑜𝑖𝑑𝑎𝑙 𝑡𝑢𝑟𝑛𝑠
# 𝑜𝑓 𝑝𝑜𝑙𝑜𝑖𝑑𝑎𝑙 𝑡𝑢𝑟𝑛𝑠

. safety factor = ratio of the toroidal to poloidal angle along the field line.

Along the field line: 𝐵𝜃
𝐵𝑧

= 𝑟Δ𝜃
𝑅Δ𝜑

→ 𝑞 = Δ𝜑
Δ𝜃

= 𝑟
𝑅

Bz
B𝜃

; (remember 2𝜋𝑅 ↔ 𝐿)

The safety factor is not usually constant across the plasma
 magnetic field lines are sheared radially.

The shear 𝑠 can be calculated from the safety factor 𝑞: 𝑠 = 𝑟
𝑞
𝑑𝑞
𝑑𝑟
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What is so safe about the safety factor?
Remember:
the axial field was needed to stabilize the plasma against any bending.
Clearly the safety factor increases with increasing axial field.
High enough 𝑞 thus keeps the plasma safe against such instability.

For instance, to stabilize the kink instability (in a tokamak) we need 𝑞 > 1.
Typically 𝑞 𝑟 = 0  ~ 1,𝑞 𝑟 = 𝑎  ~ 3 in a ’large’ aspect ratio tokamak, 𝑅/𝑎 =  3
 𝐵𝑡𝑜𝑟~10𝐵𝑝𝑜𝑙

 tokamak 𝛽’s are only a few % : 𝛽 = <𝑝>
𝐵𝑡𝑜𝑡2 2𝜇0⁄ ≈ <𝑝>

𝐵𝑡𝑜𝑟2 2𝜇0⁄ ≈ 1
100

𝛽𝑝𝑜𝑙
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Toroidal configurations
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Toroidal plasma & flux surfaces
We already slipped into toroidal geometry – and there is no return:
By introducing the axial field to z-pinch we also re-introduced end losses. 
 let’s eliminate the ends by going to torus!
 each field line traces one concentric toroidal surface.
Recall:

𝑩 ⋅ 𝛻𝑝 = 𝑩 ⋅ 𝒋 × 𝑩 = 0 = 𝒋 ⋅ 𝛻𝑝

 pressure gradient can exist only perpendicular to these surfaces.

The surfaces are called flux surfaces because they are defined by …
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Flux integrals
Toroidal magnetic flux:
• Integrate toroidal field through a vertical surface spanned

by one of the concentric plasma surfaces
 flux surface label that steadily increases from magnetic axis

Poloidal  magnetic flux:
• Integrate poloidal field through a horizontal surface that

increases in size from edge towards magnetic axis
 flux surface label that steadily decreases from magnetic axis

Toroidal current: similarly 𝐼𝑡𝑜𝑟 = ∫ 𝒋 ⋅ 𝑑𝒂𝜑 = 1
𝜇0
∮𝑩 ⋅ 𝑑𝒍𝜑

Poloidal current: similarly 𝐼𝑝𝑜𝑙 = ∫ 𝒋 ⋅ 𝑑𝒂𝜃 = 1
𝜇0
∮𝑩 ⋅ 𝑑𝒍𝜽

Either of the magnetic
fluxes can be used as
a generalized radial
coordinate for plasmas
with arbitrary cross
section. 



Magnetic field in terms of …

𝛹𝑝𝑜𝑙 = 2𝜋න 𝐵𝑧 𝑅′, 𝑧 𝑅′𝑑𝑅′
𝑅

0

 𝐵𝑧 𝑅, 𝑧 = 1
2𝜋𝑅

𝜕𝛹𝑝𝑜𝑙(𝑅,𝑧)
𝜕𝑅

Total magnetic field has to be divergence free: 𝛻 ⋅ 𝑩 = 0

 𝐵𝑅 𝑅, 𝑧 = − 1
2𝜋𝑅

𝜕𝛹𝑝𝑜𝑙(𝑅,𝑧)
𝜕𝑧

 the poloidal magnetic field can be expressed as

 𝑩𝑝𝑜𝑙 = 𝐵𝑅𝛻𝑅 + 𝐵𝑧𝛻𝑧 = 1
2𝜋𝑅

− 𝜕𝛹𝑝𝑜𝑙

𝜕𝑧
𝛻𝑅 + 𝜕𝛹𝑝𝑜𝑙

𝜕𝑅
𝛻𝑧 ≡ 1

2𝜋
𝛻𝛹𝑝𝑜𝑙 × 𝛻𝜑

(In cylindrical coordinates: 𝑅𝛻𝜑 = 𝛻𝑧 × 𝛻𝑅)

21.11.2021
27



… the flux functions

How about the toroidal field?

Use the definition of poloidal current: 𝐼𝑝𝑜𝑙 = 1
𝜇0
𝐵𝑡𝑜𝑟 ⋅ 2𝜋𝑅

 𝐵𝑡𝑜𝑟 = 𝜇0𝐼𝑝𝑜𝑙
2𝜋𝑅

 𝑩𝑡𝑜𝑟 = 𝜇0𝐼𝑝𝑜𝑙
2𝜋

𝛻𝜑

 Total magnetic field: 𝑩𝑡𝑜𝑡 = 1
2𝜋

𝛻𝛹𝑝𝑜𝑙 × 𝛻𝜑 + 𝜇0𝐼𝑝𝑜𝑙𝛻𝜑

This is associated with the current density given by Ampere’s law:

𝒋 = 1
𝜇0
𝛻 × 𝑩 = … which takes a little work to give ..
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Grad-Shafranov equation
𝒋 =

1
2𝜋𝜇0

𝜇0𝛻𝐼𝑝𝑜𝑙 × 𝛻𝜑 − ∆∗Ψ𝑝𝑜𝑙𝛻𝜑

Where ∆∗Ψ𝑝𝑜𝑙 ≡ 𝑅2𝛻 ⋅
𝛻Ψpol

𝑅2
is the so-called Stokes operator.

In cylindrical coordinates: ∆∗= 𝑅 𝜕
𝜕𝑅

1
𝑅

𝜕
𝜕𝑅

+ 𝜕2

𝜕𝑧2

For those brave of heart, plug these expressions into the force balance

∆∗Ψ𝑝𝑜𝑙 = −𝜇02𝜋𝑅𝑗𝜑 = −𝜇0 2𝜋𝑅 2𝑝′ − 𝜇02𝐼′𝑝𝑜𝑙𝐼𝑝𝑜𝑙
This is called the Grad-Shafranov equation and it gives the equilibrium (= flux
surface structure Ψ𝑝𝑜𝑙) dictated by the pressure profile and the currents.
Not a piece of cake: non-linear elliptic PDE – remember: 𝑝 = 𝑝(Ψ𝑝𝑜𝑙)
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How to determine the stability of our
equilibria?
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Stability of an equilibrium

Recall start of the lecture: equilibria can vary
wrt their stability properties.

After solving for our equilibrium, how can we
find whether it is stable or not?

At least two methods:
1. As an eigenvalue problem
2. Via energy principle
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Intuitive approach to stability
Let’s once again perturb our equilibrium and make a linear stability analysis
by writing all terms as 𝑓 = 𝑓0 + 𝑓1 and keeping only terms up to first order.

Here our primary quantity is the plasma displacement, 𝝃: 𝐯1= 𝑑𝝃
𝑑𝑡

This means that we have to integrate in time many of the MHD equations.
Starting with our standard, simple plasma, the linearized equations become:

Continuity: 𝜌1 = −𝛻 ⋅ (𝜌0𝝃)
Equation of state: 𝑝1 = −𝑝0𝛾𝛻 ⋅ 𝝃 − 𝝃 ⋅ 𝛻𝑝0
Faraday + Ohm: 𝑩1 = 𝛻 × (𝝃 × 𝑩0)
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Instability as an eigenvalue problem
And last but not least (using also Ampere’s law) …
The equation of motion:

𝜌0
𝜕2𝝃
𝜕𝑡2

= 1
𝜇0

𝛻 × 𝑩0 × 𝑩1 + 𝛻 × 𝑩1 ×𝑩𝟎 + 𝛻(𝑝0𝛾𝛻 ⋅ 𝝃 + 𝝃 ⋅ 𝛻𝑝0)

This can be expressed as 𝜌0
𝜕2𝝃
𝜕𝑡2

= 𝑭 𝝃

Now applying the Fourier decomposition gives 𝜔2𝜌0𝝃 = 𝑭 𝝃
Which is an eigenvalue problem for 𝜔2 and gives the stability:

• 𝜔2 > 0 → stable
• 𝜔2 < 0 → unstable
 not only do we get the (in-)stability, but even the growth rate, 𝐼𝑚 𝜔  !
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Energy principle in stability analysis
Unfortunately, the eigenvalue problems tend to be mathematically very
complicated and can be solved only numerically.
However, if one is only interested whether a given equilibrium is stable or not,
one can apply the energy principle:
Multiply the eigenvalue problem by 𝝃*, the complex-conjugate of 𝝃, and
integrate over the whole volume

𝜔2න 𝝃 2𝑑𝑉 = −න𝝃∗ ⋅ 𝑭 𝝃 𝑑𝑉

LHS: clearly the kinetic energy of the system, 𝐾 𝝃, 𝝃∗

RHS: the work done against the force 𝑭 potential energy 𝛿W 𝝃, 𝝃∗
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Understanding the energy principle
So we have a very simple-looking equation for 𝜔2: 𝜔2 = 𝛿𝑊 𝝃,𝝃∗

𝐾 𝝃,𝝃∗

But we don’t have to solve that to find the stability: 𝐾 𝝃, 𝝃∗ > 0 always
Stability of the equilibrium is given by 𝛿W 𝝃, 𝝃∗ :

• 𝛿W 𝝃, 𝝃∗ > 0 a stable equilibrium
• 𝛿W 𝝃, 𝝃∗ < 0 unstable equilibrium.

Looks easy? Not necessarily:
• There is a lot of sophisticated math skipped here
• One has to come up with an appropriate test function 𝝃
• 𝛿W has actually three terms: plasma+vacuum+surface ...
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