
Testing & CI/CD Automation 
Tools

Nikolai Denissov

1



0. ToC

1. Testing (I talk)
2. Example (I show & talk, you talk and guess)
3. Tooling (I talk again)
4. Real world project example (I show, you investigate)
5. Discussion (everybody dance talk)

2



1. Testing

3



1.1 What is testing?

● Practice that allows to verify and validate the software.

Verify is for ensuring it works as it should.

Validate is for confirming the quality of the software (that it does not crash and 
burn of the very first use).

4



1.2. Testing flavours (1)

● Testing pyramid by the book

5



1.3. Testing flavours (2)

● Testing pyramid

Whatever 
tests

Unit tests

6



1.4. What and how much to test?

What to test?

● Methods
● Units (several methods together)
● Component
● Services
● ...

What to take into account?

● Effort
● Service expected lifespan
● Execution time

7



1.5. When to make tests?

● Whenever, as long as done

8



2. Example*

9



2.1. Task as a user story (yeeeey!)

As a researcher, I want to classify animals names from the “Cat” family (Felidae).

What type of data are we working with. 

AC:

We will “create” a “transformer” tool.

10



2.2. Task + AC

Acceptance Criteria aka AC:

1. CAT is a domestic animal.

2. TIGER is a wild animal.

3. …

Acceptance criteria are mostly about verify.

11



2.3. Task + better* AC

AC:

● Given a “CAT”, 

When the transformer is called, 

Then the result is “domestic animal”.

● Given a “TIGER”, 

When the transformer is called, 

Then the result is “wild animal”.

● Given no animal, 

When the transformer is called, 

Then the result is “no animal”.

● Given any animal, 

And the animal is neither “CAT nor 
“TIGER”,

When the transformer is called, 

Then the result is “unknown animal”.

12



2.4. OK, let’s code (Scala 2.13 styled)

13



2.5. Quiz!!1

What is the minimal amount of test cases is reasonable to have here?

● 0, it won’t compile even
● 2
● 4
● 5

14



2.6. Task change

AC:

● Given a “LION”, 

When the transformer is called, 

Then the result is “wild animal”.

15



2.7. OK, let’s code again (Scala 2.13 styled)

16



2.7. Quiz!!1

What happens to the existing tests?

How many test cases we should change?

● 0
● 1
● 2
● 5

17



2.8. Unit vs. Other tests

● It’s mostly the scope, that matters

2.10. How often to run tests?

● As often as possible...

2.9. What about the Testing Frameworks?

● Implementation language specific stuff: Play, ScalaTest, Jest, etc.

18



3. Tooling

19



3.1. Automation

● How to run the tests often?
● How to run the tests with the least effort?
● When to use automation (and when not to)?

20



3.2. Automated Quality Analysis Tools

● Code static analysis tools I
○ IDE itself or via extensions, 
○ linters, 
○ the compiler

● Code static analysis tools II
○ Sonar, 
○ Black Duck, 
○ Etc.

Take a look at GitHub student pack: https://education.github.com/pack

21

https://alternativeto.net/software/sonarqube/
https://alternativeto.net/software/black-duck-software/
https://education.github.com/pack


3.3. Automation Deployment Tools

● Jenkins
● GitHub Actions
● GitLab CI
● Travis/Circle/Whatever CIs
● Cloud-specific ones (Azure, AWS, GCP)

22



4. Real World Example

23



4.1. Intro

https://github.com/Aalto-LeTech/aplus-courses
24



4.2. Tests (1)

● Unit tests: 
https://github.com/Aalto-LeTech/aplus-courses/blob/master/src/test/java/fi/aalt
o/cs/apluscourses/utils/ArrayUtilTest.java

● Platform tests: 
https://github.com/Aalto-LeTech/aplus-courses/blob/master/src/test/java/fi/aalt
o/cs/apluscourses/intellij/services/PluginSettingsTest.java

● API tests (against the external platform): 
https://github.com/Aalto-LeTech/aplus-courses/blob/master/src/test/java/fi/aalt
o/cs/apluscourses/integration/ApiTest.java

25

https://github.com/Aalto-LeTech/aplus-courses/blob/master/src/test/java/fi/aalto/cs/apluscourses/utils/ArrayUtilTest.java
https://github.com/Aalto-LeTech/aplus-courses/blob/master/src/test/java/fi/aalto/cs/apluscourses/utils/ArrayUtilTest.java
https://github.com/Aalto-LeTech/aplus-courses/blob/master/src/test/java/fi/aalto/cs/apluscourses/intellij/services/PluginSettingsTest.java
https://github.com/Aalto-LeTech/aplus-courses/blob/master/src/test/java/fi/aalto/cs/apluscourses/intellij/services/PluginSettingsTest.java
https://github.com/Aalto-LeTech/aplus-courses/blob/master/src/test/java/fi/aalto/cs/apluscourses/integration/ApiTest.java
https://github.com/Aalto-LeTech/aplus-courses/blob/master/src/test/java/fi/aalto/cs/apluscourses/integration/ApiTest.java


4.3. Tests (2)

● Concurrency testing: 
https://github.com/Aalto-LeTech/aplus-courses/blob/master/src/test/java/fi/aalt
o/cs/apluscourses/utils/PostponedRunnableTest.java

● Manual testing: 
https://github.com/Aalto-LeTech/aplus-courses/blob/master/TESTING.md

● e2e testing: 
https://github.com/Aalto-LeTech/aplus-courses/blob/master/src/e2e/kotlin/fi/aa
lto/cs/apluscourses/e2e/fixtures/CommonFixtures.kt

26

https://github.com/Aalto-LeTech/aplus-courses/blob/master/src/test/java/fi/aalto/cs/apluscourses/utils/PostponedRunnableTest.java
https://github.com/Aalto-LeTech/aplus-courses/blob/master/src/test/java/fi/aalto/cs/apluscourses/utils/PostponedRunnableTest.java
https://github.com/Aalto-LeTech/aplus-courses/blob/master/TESTING.md
https://github.com/Aalto-LeTech/aplus-courses/blob/master/src/e2e/kotlin/fi/aalto/cs/apluscourses/e2e/fixtures/CommonFixtures.kt
https://github.com/Aalto-LeTech/aplus-courses/blob/master/src/e2e/kotlin/fi/aalto/cs/apluscourses/e2e/fixtures/CommonFixtures.kt


4.4. Tools

● Sonar: 
https://sonarcloud.io/summary/new_code?id=Aalto-LeTech_intellij-plugin

● Snyk: 
https://snyk.io/test/github/Aalto-LeTech/intellij-plugin?targetFile=build.gradle&t
ab=dependencies

● GitHub Actions: 
https://github.com/Aalto-LeTech/aplus-courses/blob/master/.github/workflows/
build.yml

27

https://sonarcloud.io/summary/new_code?id=Aalto-LeTech_intellij-plugin
https://snyk.io/test/github/Aalto-LeTech/intellij-plugin?targetFile=build.gradle&tab=dependencies
https://snyk.io/test/github/Aalto-LeTech/intellij-plugin?targetFile=build.gradle&tab=dependencies
https://github.com/Aalto-LeTech/aplus-courses/blob/master/.github/workflows/build.yml
https://github.com/Aalto-LeTech/aplus-courses/blob/master/.github/workflows/build.yml


Some curious read

● 12 Factor app: https://12factor.net/
● Agile Manifesto: https://agilemanifesto.org/

28

https://12factor.net/
https://agilemanifesto.org/

