$A P$
Aalto University
School of Electrical
Engineering
E4230

Microwave

 Instrumetation(5cr)
Jaan Praks
Aalto University

Can you explain?

Aalto University
School of Electrical
Engineering

Aalto University
School of Electrical
Engineering

Polarization

Ex

The polarization of a uniform plane wave describes the locus traced by the tip of the E vector (in the plane orthogonal to the direction of propagation) at a given point in space as a function of time.

$\mathbf{E}(z)=\hat{\mathbf{x}} E_{x}(z)+\hat{\mathbf{y}} E_{y}(z)$

$\begin{array}{cc}\chi & \psi \rightarrow \\ 45^{\circ} & \text { Left circular polarization }\end{array}$
-45°
0°
45°

22.5° Left elliptical polarization

0° Linear polarization

-22.5° Right elliptical polarization

-45°
Right circular polarization

(ψ, χ)

Polarization ellipse

$$
\begin{gather*}
\mathbf{E}=\left[\begin{array}{c}
E_{\mathrm{v}} \\
E_{\mathrm{h}}
\end{array}\right], \tag{5.3}\\
E_{\mathrm{v}}=a_{\mathrm{v}}, \tag{5.4a}\\
E_{\mathrm{h}}=a_{\mathrm{h}} e^{j \delta}, \tag{5.4b}\\
\tan 2 \psi=\left(\tan 2 \alpha_{0}\right) \cos \delta=\frac{2 a_{\mathrm{v}} a_{\mathrm{h}}}{a_{\mathrm{v}}^{2}-a_{\mathrm{h}}^{2}} \cos \delta \tag{5.5a}\\
(-\pi / 2 \leq \psi \leq \pi / 2), \\
\sin 2 \chi=\left(\sin 2 \alpha_{0}\right) \sin \delta=\frac{2 a_{\mathrm{h}} a_{\mathrm{v}}}{a_{\mathrm{h}}^{2}+a_{\mathrm{v}}^{2}} \sin \delta \tag{5.5b}\\
(-\pi / 4 \leq \chi \leq \pi / 4), \\
\tan \alpha_{0}=\frac{a_{\mathrm{h}}}{a_{\mathrm{v}}} \tag{5.6}
\end{gather*}
$$

Figure 5-2: Polarization ellipse in the $v-h$ plane for a wave traveling in the $\hat{\mathbf{k}}$ direction.

EM wave in Spherical Coordinate

 System$$
\mathbf{E}=\left(\hat{\mathbf{v}} E_{\mathrm{v}}+\hat{\mathbf{h}} E_{\mathrm{h}} e^{-j k \hat{\mathbf{k}} \cdot \hat{\mathbf{R}}} \quad \hat{\mathbf{v}}=\hat{\mathbf{h}} \times \hat{\mathbf{k}}\right.
$$

$$
\mathbf{E}=\left[\begin{array}{l}
E_{\mathrm{V}} \\
E_{\mathrm{h}}
\end{array}\right] \quad \text { Complex amplitudes }
$$

s

Relation between E^{i} and E^{s}

In the case of all E components

$$
\begin{gathered}
\mathbf{E}^{\mathrm{s}}= \\
\mathbf{E}^{\mathrm{i}}=\hat{\mathbf{v}}_{\mathrm{i}} E_{\mathrm{v}}^{\mathrm{i}}+\hat{\mathbf{h}}_{\mathrm{i}} E_{\mathrm{h}}^{\mathrm{i}}, \\
\mathbf{E}^{\mathrm{s}}=\hat{\mathbf{v}}_{\mathrm{s}} E_{\mathrm{v}}^{\mathrm{s}}+\hat{\mathbf{h}}_{\mathrm{s}} E_{\mathrm{h}}^{\mathrm{s}}, \\
\bigcap
\end{gathered}\left[\begin{array}{l}
E_{\mathrm{v}}^{\mathrm{s}} \\
E_{\mathrm{h}}^{\mathrm{s}}
\end{array}\right]=\left(\frac{e^{-j k R_{\mathrm{r}}}}{R_{\mathrm{r}}}\right)\left[\begin{array}{ll}
\widetilde{S}_{\mathrm{Vv}} & \widetilde{S}_{\mathrm{vh}} \\
\widetilde{S}_{\mathrm{hv}} & \widetilde{S}_{\mathrm{hh}}
\end{array}\right]\left[\begin{array}{l}
E_{\mathrm{v}}^{\mathrm{i}} \\
E_{\mathrm{h}}^{\mathrm{i}}
\end{array}\right] .
$$

$\widetilde{\boldsymbol{S}}$ is the scattering matrix

Scattering matrix in BSA

$$
\mathbf{S}=\left(\begin{array}{ll}
S_{\mathrm{vv}} & S_{\mathrm{vh}} \\
S_{\mathrm{hv}} & S_{\mathrm{hh}}
\end{array}\right)
$$

$$
S_{\mathrm{vh}}=S_{\mathrm{hv}}
$$

(backscatter).

Because of reciprocity theorem

Polarization synthesis

When scattering matrix is known, scattered wave can be calculated to ANY incident wave, with arbitrary polarization! Calculation of response for arbitrary polarization is called polarization synthesis.
Scattering matrix can be transformed to different polarization bases.

$$
\left[\begin{array}{l}
E_{\mathrm{v}}^{\mathrm{s}} \\
E_{\mathrm{h}}^{\mathrm{s}}
\end{array}\right]=\left(\frac{e^{-j k R_{\mathrm{r}}}}{R_{\mathrm{r}}}\right)\left[\begin{array}{ll}
\widetilde{S}_{\mathrm{Vv}} & \widetilde{S}_{\mathrm{yh}} \\
\widetilde{S}_{\mathrm{hv}} & \widetilde{S}_{\mathrm{hh}}
\end{array}\right]\left[\begin{array}{l}
E_{\mathrm{V}}^{\mathrm{i}} \\
E_{\mathrm{h}}^{\mathrm{i}}
\end{array}\right]
$$

Scattering matrix connects any arbitrary polarized incident wave to scattered wave

Connection between σ and S

For simple point target the

 relation is:$$
p, q=\mathrm{v} \text { or } \mathrm{h}
$$

$$
\sigma_{p q}=\lim _{R_{\mathrm{r}} \rightarrow \infty}\left(4 \pi R_{\mathrm{r}}^{2} \frac{\mathcal{S}_{p}^{\mathrm{s}}}{\mathcal{S}_{q}^{\mathrm{i}}}\right)
$$

$$
\sigma_{p q}=4 \pi\left|\widetilde{S}_{p q}\right|^{2}
$$

$$
\mathcal{S}_{p}^{\mathrm{s}}=\left|E_{p}^{\mathrm{s}}\right|^{2} / 2 \eta_{0}
$$

$$
\mathcal{S}_{q}^{\mathrm{i}}=\left|E_{q}^{\mathrm{s}}\right|^{2} / 2 \eta_{0}
$$

$$
\widetilde{S}_{p q}=\widetilde{S}_{p q}\left(\theta_{i}, \phi_{i} ; \theta_{\mathrm{s}}, \phi_{\mathrm{s}} ; \theta_{j}, \phi_{j}\right)=\lim _{R_{\mathrm{r}} \rightarrow \infty}\left[R_{\mathrm{r}} e^{-j k R_{\mathrm{r}}}\left(\frac{E_{p}^{\mathrm{s}}}{E_{q}^{\mathrm{i}}}\right)\right]
$$

Polarization synthesis

Backscattering coefficient depends on antenna polarization!

$$
\sigma_{0 t r}=K\left[\begin{array}{l}
E_{x}^{r} \\
E_{y}^{t}
\end{array}\right]\left[\begin{array}{ll}
S_{h h} & S_{h v} \\
S_{v h} & S_{v v}
\end{array}\right]\left[\begin{array}{l}
E_{x}^{t} \\
E_{y}^{t}
\end{array}\right]=K \boldsymbol{E}^{r} S \boldsymbol{E}^{t}
$$

By knowing scattering matrix, backscattering is possible to calculate for ANY antenna polarization combination!

$$
K=\frac{e^{-j k R_{r}}}{R_{r}}
$$

Scattering matrix in different polarimetric basis

Scattering matrix can be presented in many orthogonal polarization basis systems.

- horizontal - vertical,
- right-left circular
- -45 - +45 linear

Orthogonal basis points are located on the opposite side of Poincare sphere

Why to measure polarization?

- When the wave is reflected the polarization of reflected wave depends on the polarization of incident wave and the structure and dielectric constant of the reflected objects

Basic backscattering mechanisms

- Single reflection $\mathbf{S}=\frac{a}{2}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad($ metal sphere $)$.
- Double reflection

$$
\mathbf{S}=\frac{k_{0} a b}{\pi}\left(\begin{array}{cc}
-1 & 0 \tag{5.140}\\
0 & 1
\end{array}\right) .
$$

- Trihedral reflector

$$
\mathbf{S}=\frac{k_{0} l^{2}}{\sqrt{2} \pi}\left(\begin{array}{ll}
1 & 0 \tag{5.141}\\
0 & 1
\end{array}\right) .
$$

Scattering matrix of thin cylinder target

Polarization response can be estimated and for many target

Aalto University
School of Electrica
Engineering

Polarimetric radar

Transmission polarization

Horizontal

Vertical

Reception polarization

Horizontal

Vertical

(b) Timing diagram

Figure 5-36: Calibration of polarimetric radar. A polarimetric radar is implemented by alternately transmitting signals out of horizontally and vertically polarized antennas and receiving at both polarizations simultaneously. Two pulses are needed to measure all the elements in the scattering matrix [van Zyl and Kim,

Polarimetric Measurement

Measuring one polarization

$$
E_{x}^{r}=K\left[S_{h h}\right] E_{x}^{t}
$$

Polarimertic SAR measures scattering matrix
for most media Shv=Svh (reciprocity)

Backscattering for arbitrary polarization!

$$
\sigma_{0 t r}=K\left[\begin{array}{c}
E_{x}^{r} \\
E_{y}^{t}
\end{array}\right]\left[\begin{array}{ll}
S_{h h} & S_{h v} \\
S_{v h} & S_{v v}
\end{array}\right]\left[\begin{array}{c}
E_{x}^{t} \\
E_{y}^{t}
\end{array}\right]=K E^{r} S E^{t}
$$

Aalto University

Polarimetric image

Shh

$$
\left[\begin{array}{c}
E_{x}^{r} \\
E_{y}^{r}
\end{array}\right]=K\left[\begin{array}{lc}
S_{h h} & S_{h v} \\
S_{v h} & S_{v v}
\end{array}\right]\left[\begin{array}{c}
E_{x}^{t} \\
E_{y}^{t}
\end{array}\right]
$$

Swv

$$
\left[\begin{array}{c}
E_{x}^{r} \\
E_{y}^{r}
\end{array}\right]=K\left[\begin{array}{cc}
S_{h h} & S_{b w} \\
S_{v h} & S_{v v}
\end{array}\right]\left[\begin{array}{c}
E_{x}^{t} \\
E_{y}^{t}
\end{array}\right]
$$

Shv

$$
\left[\begin{array}{c}
E_{x}^{r} \\
E_{y}^{r}
\end{array}\right]=K\left[\begin{array}{ll}
S_{h h} & S_{h v} \\
S_{v h} & S_{v v}
\end{array}\right]\left[\begin{array}{l}
E_{x}^{t} \\
E_{y}^{t}
\end{array}\right]
$$

Phase Shh

Phase
Shh-Svv

Span
? School of Electrical
Engineering

Aalto University School of Electrical
Engineering

Aalto University
School of Electrical
Engineering

Visualizing Polarimetric image

Pauli
RGB

$$
\left[\begin{array}{c}
E_{x}^{r} \\
E_{y}^{r}
\end{array}\right]=K \xlongequal[S_{h h}]{S_{v k}}\left[\begin{array}{c}
S_{v v} \\
S_{v v}^{t} \\
E_{y}^{t}
\end{array}\right]
$$

Polarimetric Indices

Polarization channels allow calculation of various linear combinations of channels with special interpretation:

$$
R V I=\frac{\frac{1}{8 \sigma H V}}{\frac{1}{\sigma H H}+\frac{1}{\sigma V V}+\frac{1}{2 \sigma H V}}
$$

Radar Vegetation Index

Figure 5-48: RVI images of the area shown in Fig. 5-47 at three different frequencies. The RVI is scaled from 0 (black) to 1 (white). Note that the L-band RVI in the forested area is higher than the C-band RVI, while the C-band RVI is higher than the others in the agricultural areas..

Decompositions

Various decompositions schemes present measured target as sum of simple known targets

Point target coherent decompositi ons

Aalto University

Pauli Decomposition

Pauli decomposition
Pv

Pauli spin matrixes

Pauli matrices are a set of three 2
$\times 2$ complex matrices which are Hermitian and unitary.

Any $\mathbf{2 x} \mathbf{2}$ complex matrix can be represented as a sum of unitary matrix and Pauli matrices:

$$
\begin{aligned}
& \sigma_{1}=\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& \sigma_{2}=\sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
& \sigma_{3}=\sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

$$
\mathbf{S}=\boldsymbol{\alpha}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\beta\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)+\gamma\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+\delta\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Wolfgang Pauli (1900-1958)

Polarimetric Pauli Decomposition

Scattering matrix can be presented as a sum of Pauli matrixes (in Pauli basis).

$$
[S]=\left[\begin{array}{ll}
S_{h n} & S_{h v} \\
S_{h v} & S_{v v}
\end{array}\right]=\alpha[S]_{a}+\beta[S]_{b}+\gamma[S]_{c}
$$

where:

$$
\begin{array}{ll}
& {[S]_{a}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]} \\
\alpha=\frac{S_{k b}+S_{w}}{\sqrt{2}} & {[S]_{b}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]} \\
\beta=\frac{S_{h b}-S_{w w}}{\sqrt{2}} & {[S]_{c}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right]} \\
\gamma=\sqrt{2} S_{k v} & {[S]_{d}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]}
\end{array}
$$

What color?

- Single reflection $\mathbf{S}=\frac{a}{2}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad($ metal sphere $)$.

- Double reflection

$$
\mathbf{S}=\frac{k_{0} a b}{\pi}\left(\begin{array}{cc}
-1 & 0 \tag{5.140}\\
0 & 1
\end{array}\right) .
$$

- Trihedral reflector

$$
\mathbf{S}=\frac{k_{0} l^{2}}{\sqrt{2} \pi}\left(\begin{array}{ll}
1 & 0 \tag{5.141}\\
0 & 1
\end{array}\right)
$$

Pauli
 decomposition

R=Shh-Svv
G=Shv+Svh
B=Shh+Svv

Shh-Svv is low for single reflection

Shh+Svv is low for double reflection

Aalto University

Pauli decomposition

Boxcar average

R=Shh-Svv
G=Shv
B=Shh+Svv

Pauli decomposition visualisation

Benefits:

- Simple interpretation
- Easy to calculate

Drawbacks:

- Color scheme is always different

Aalto University
School of Electrical
Engineering

Distributed targets and polarization

Distributed targets

We are interested in areas.

Areas have statistical properties.

When imaging land, the target is not point target!

$$
\begin{gathered}
P_{p}^{\mathrm{r}}(\theta)=\iint_{A} \frac{P_{q}^{\mathrm{t}} G^{2}\left(\theta_{\mathrm{a}}, \phi_{\mathrm{a}}\right) \lambda^{2}}{(4 \pi)^{3} R_{\mathrm{a}}^{4}} \cdot \sigma_{p q}^{0} d A \\
\sigma_{p q}^{0}=\sigma_{p q} / A
\end{gathered}
$$

backscattering cross section per unit area backscattering coefficient radar reflectivity are the same parameter

Distributed target

For a distributed target occupying Nc cells each of area A, its polarization synthesis equation is given by

$$
\begin{align*}
\sigma_{\mathrm{rt}}^{0}\left(\psi_{\mathrm{r}}, \chi_{\mathrm{r}} ; \psi_{\mathrm{t}}, \chi_{\mathrm{t}}\right) & =\frac{4 \pi}{A N_{\mathrm{c}}} \sum_{i=1}^{N_{\mathrm{c}}}\left|\mathbf{p}^{\mathrm{r}} \cdot \mathbf{S}_{i} \mathbf{p}^{\mathrm{t}}\right|^{2} \tag{5.143}\\
& \left.=\left.\frac{4 \pi}{A}\langle | \mathbf{P}^{\mathrm{r}} \cdot \mathbf{S} \mathbf{p}^{\mathrm{t}}\right|^{2}\right\rangle,^{\dagger}
\end{align*}
$$

(distributed target)

Aalto University
School of Electrical
Engineering

Covariance matrix preserves statistical relationships between scattering matrix elements!

$$
\vec{k}_{B}=\left[S_{H H}, S_{H V}, S_{V H}, S_{V V}\right]^{T}
$$

$$
[C]_{\text {Hx4 }}=\left\langle\vec{k}_{B} \vec{k}_{B}^{t}\right\rangle=\left[\begin{array}{cccc}
\left.\left.\langle | S_{H H}\right|^{2}\right\rangle & \left\langle S_{H H} S_{H V}^{*}\right\rangle & \left\langle S_{H H} S_{V H}^{*}\right\rangle & \left\langle S_{H H} S_{V V}^{*}\right\rangle \\
\left\langle S_{H V} S_{H H}^{*}\right\rangle & \left\langle\left. S_{H V}\right|^{2}\right\rangle & \left\langle S_{H V} S_{V H}^{*}\right\rangle & \left\langle S_{H V} S_{V V}^{*}\right\rangle \\
\left\langle S_{V H} S_{H H}^{*}\right\rangle & \left\langle S_{V H} S_{H V}^{*}\right\rangle & \left\langle\left. S_{V H}\right|^{2}\right\rangle & \left\langle S_{V H} s_{V V}^{*}\right\rangle \\
\left\langle S_{V V} S_{H H}^{*}\right\rangle & \left\langle S_{V V} S_{H V}^{*}\right\rangle & \left\langle S_{V V} S_{V H}^{*}\right\rangle & \left.\left.\langle | S_{V V}\right|^{2}\right\rangle
\end{array}\right]
$$

Concept of covariance matrix

$$
\Sigma=\left[\begin{array}{ccc}
\operatorname{Var}(X) & \operatorname{Cov}(X, Y) & \operatorname{Cov}(X, Z) \\
\operatorname{Cov}(X, Y) & \operatorname{Var}(Y) & \operatorname{Cov}(Y, Z) \\
\operatorname{Cov}(X, Z) & \operatorname{Cov}(Y, Z) & \operatorname{Var}(Z)
\end{array}\right]
$$

Polarimetic measurement; statistical point of view

- Target is described by set of scattering matrices, each are random measurement from certain distribution function, specific for the target.
- Signal is complex zero-mean Gaussian if number of scatterers is large in resolution cell (applies for many SAR measurements, does not apply always for longer wavelength and high resolution)
- All the information about Gaussian-distributed target carried by covariance matrix.
- Statistical model describes the actual information content of the data
- Measurement vector
- Covariance matrix

$$
S=\left(\begin{array}{l}
S_{h h} \\
S_{h v} \\
S_{v v}
\end{array}\right) \equiv\left(\begin{array}{c}
S_{1} \\
S_{2} \\
S_{3}
\end{array}\right)
$$

$$
C_{k l}=\left\langle S_{k} S_{l}^{*}\right\rangle
$$

$$
C=\left(\begin{array}{ccc}
\operatorname{var}\left(S_{1}\right) & \operatorname{cov}\left(S_{1} S_{2}\right) & \operatorname{cov}\left(S_{1} S_{3}\right) \\
\operatorname{cov}\left(S_{1} S_{2}\right) & \operatorname{var}\left(S_{2}\right) & \operatorname{cov}\left(S_{2} S_{3}\right) \\
\operatorname{cov}\left(S_{3} S_{1}\right) & \operatorname{cov}\left(S_{3} S_{2}\right) & \operatorname{var}\left(S_{3}\right)
\end{array}\right)
$$

Aalto University

Working with polarimetric data

Polarimetric image

- Polarimetric SAR measures
multidimensional information (five dimensions for single scatterer and nine dimensions for distributed scatterer)
- It is difficult to visualize all parameters of scatterer on one image

Polarimetric data:

- Polarimetric data is complex
- Polarimetric data has more parameters than can be visualized in RGB
- Polarimetric properties are fully preserved only for SLC slant range data

Usually polarimetric images are presented in Pauli Basis or presented by using Decomposition techniques which provide easily interpretable parameters

Different representations in polarimetry

Allthough, large variety of matrices are used in polarimetry, there are only two fundamental matrices:
Scattering matrix S

- Contains information about single pixel, single coherent wave or measurement.
- Can not be averaged (expectation value is zero)
- Pauli matrices
- Sinclair matrices
- etc.

Covariance matrix C

- Contains statistical information about ensemble of S matrices or multiple measurements
- Can be averaged
- Stokes matrix
- Muller matrix
- Coherency matrix
- Etc

School of Electrical
Engineering

Covariance matrix is matrix which contains information about \mathbf{S} matrix distribution and its moments.

From S matrix is possible to calculate always C matrix, but not always in other way round.

Different matrices in the same matrix class are just the same information in different basis.

Polarimetric SAR image pixel is a complex matrix describing target's properties

Optical B\&W image

PoISAR image

Pixel=(R,G,B)

Radar target decompositions

- The Idea of target decomposition is to present target scattering properties as a sum of simple scatterers.

- Reasonable decomposition should be unique, invariant under reasonable transformations and stable under small perturbations.
- Different presentations of polarimetric data leads to different decomposition techniques, but all of them are based on matrix algebra.

Typical Polarimetric SAR image processing

Freeman-Durden decomposiution

Model based decomposition

Figure 5-49: Scattering mechanisms for a forest canopy.
From: Microwave Radar and Radiometric Remote Sensing, by Ulaby and Long, 2014, with permission.

$$
\langle | T]\rangle=\frac{f_{s}}{1+|\alpha|^{2}}\left[\begin{array}{ccc}
1 & \beta^{*} & 0 \\
\beta & |\beta|^{2} & 0 \\
0 & 0 & 0
\end{array}\right]+\frac{f_{d}}{1+|\alpha|^{2}}\left[\begin{array}{ccc}
|\alpha|^{2} & \alpha & 0 \\
\alpha^{*} & 1 & 0 \\
0 & 0 & 0
\end{array}\right]+\frac{f_{v}}{4}\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\frac{f_{c}}{2}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & \pm j \\
0 & \mp j & 1
\end{array}\right]
$$

(c) P-band

From: Microwave Radar and F $\begin{aligned} & \text { Figure 5-50: Results of the Freeman-Durden decomposition for the Black Forest image at (a) C-band, (b) L-band, and (c) } \\ & \text { P-band. Surface, dihedral-corner, and volume scattering components are displayed in blue, red, and green colors, respectively. }\end{aligned}$

(a) Entropy

(b) Pedestal

(c) RVI

Figure 5-46: Radar images of San Francisco showing the three measures of scattering randomness: (a) entropy scaled from 0 (black) to 1 (white); (b) pedestal height scaled from 0 (black) to 0.5 (white); and (c) the radar vegetation index scaled from 0 (black) to 1 (white).

Aalto University

Alpha-entropy or Cloude-Pottier decomposition (eigenvalue decomposition)

SAR Data Analysis example using decomposition

Cloude-Pottier eigenvalue decomposition

Target scattering vector in Pauli basis

Coherency Matrix:

$$
\begin{gathered}
\bar{k}=[a, b, c]^{T}=\frac{1}{\sqrt{2}}\left[S_{h h}+S_{v v}, S_{h h}-S_{v v}, S_{h v}+S_{v h}\right]^{T} \\
\langle\mathbf{T}\rangle=\left\langle\vec{k} \vec{k}^{\dagger}\right\rangle \\
\langle\mathbf{T}\rangle=\lambda_{1} \vec{k}_{1} \vec{k}_{1}^{\dagger}+\lambda_{2} \vec{k}_{2} \vec{k}_{2}^{\dagger}+\lambda_{3} \vec{k}_{3} \vec{k}_{3}^{\dagger} \\
\mathbf{T}=\mathbf{U}_{3}\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right] \mathbf{U}_{3}^{\dagger} \\
\mathbf{U}_{3}=\left[\begin{array}{ccc}
\vec{k}_{1} & \vec{k}_{2} & \vec{k}_{3}
\end{array}\right]
\end{gathered}
$$

Classification parameters:

$$
\begin{gathered}
\quad \begin{array}{c}
\text { Entropy } \\
H
\end{array}=-\sum_{i=1}^{4} p_{i} \log p_{i}
\end{gathered}
$$

Average Alpha (scattering mechanism)

$$
\langle\alpha\rangle=\sum_{i=1}^{4} p_{i} \alpha_{i}
$$

$$
\begin{array}{ll}
p_{i} & \text { eigenvalue parameter } \\
\alpha_{i} & \text { eigenvector orientation }
\end{array} \quad p_{i}=\frac{\lambda_{i}}{\sum_{i=1}^{3} \lambda_{i}}
$$

Entropy

Alpha

Entropy-alpha classification space

Classes:

Zone 9: Low Entropy Surface Scatter, Zone 8: Low Entropy Dipole Scattering,
Zone 7: Low Entropy Multiple Scattering
Zone 6: Medium Entropy Surface Scatter,
Zone 5: Medium Entropy Vegetation Scattering
Zone 4: Medium Entropy Multiple Scattering
Zone 3: High Entropy Surface Scatter
Zone 2: High Entropy Vegetation Scattering, Zone 1: High Entropy Multiple Scattering.

Entropy Alpha classification

HSI

> H=alpha
> S=1-Entropy
> I=Span

Combined hi-res HSI

H=alpha
S=1-Entropy
|=Span

Google

Polarimetric eigenvalue decomposition

Synoptic visualization with traditional alpha and entropy

- Ulaby
- Long
- Blackwell
- Elachi
- Fung
- Ruf
- Sarabandi
- Zebker
- Van Zyl

Microwave Radar and Radiometric Remote Sensing

These PowerPoint slides are intended for educational use. They should not be used for sale or financial profit.

END

Aalto University
School of Electrical
Engineering

