Problem Set 3, Due December 8, 2021

1. Draw the Production Edgeworth-Box for the following two production technologies and find the Production efficient input allocations for the two cases below:
(a) Goods 1 and 2 is produced according to:

$$
q_{1}=k_{1}^{\frac{1}{2}} l_{1}^{\frac{1}{2}}, q_{2}=k_{2}^{\frac{1}{3}} l_{2}^{\frac{2}{3}},
$$

and the total quantities of the factors are : $\bar{k}=3, \bar{l}=2$.
(b) Goods 1 and 2 is produced according to:

$$
q_{1}=\min \left\{2 k_{1}, l_{1}\right\}, q_{2}=k_{2}+3 l_{2},
$$

and the total quantities of the factors are : $\bar{k}=2, \bar{l}=5$.
2. Consider the constant returns to scale Cobb-Douglas production technology, where output q is produced from m inputs z_{j} for $j \in\{1, \ldots, m\}$ according to:

$$
q=z_{1}^{\beta_{1}} z_{2}^{\beta_{2}} \ldots z_{m}^{\beta_{m}}
$$

where $\beta_{j}>0$ for all j, and $\sum_{j=1}^{m} \beta_{j}=1$. Show that for positive production of q in a competitive equilibrium at output price p and input prices w_{j} for $j \in\{1, \ldots, m\}$, the prices must satisfy:

$$
p=\left(\frac{w_{1}}{\beta_{1}}\right)^{\beta_{1}}\left(\frac{w_{2}}{\beta_{2}}\right)^{\beta_{2}} \ldots\left(\frac{w_{m}}{\beta_{m}}\right)^{\beta_{m}} .
$$

3. Consider an exchange economy with two agents and a countably infinite number of goods $x_{0}, x_{1}, x_{2}, \ldots$. Let the initial endowment of both agents be constant across the goods: $\omega_{i l}=1$ for $i \in\{1,2\}$ and all $l \in \mathbb{N}$. Let the utility functions of the two agents be given by:

$$
u_{1}=\sum_{l=1}^{\infty} \alpha^{l} x_{1 l}, u_{2}=\sum_{l=1}^{\infty} \beta^{l} x_{2 l},
$$

for some $\alpha, \beta>0$.
(a) For a given sequence p_{l} of prices, derive the first-order conditions for optimal consumption for the two agents for consecutive goods.
(b) Find the competitive equilibrium prices for this economy.
(c) Interpret the model and the prices from a dynamic choice perspective.
4. Consider an economy with three consumers and two identical firms producing a homogenous indivisible good. The consumers have unit demand: each consumer values the first unit of the good at 7 and further units bring no additional value to them. The firms' marginal production costs are: 6 for the first unit, 3 for the second unit and 5 for the third unit.
An allocation in the economy specifies $q_{i j} \in\{0,1\}$ and $p_{i j} \in \mathbb{R}_{+}$, where $q_{i} j=1$ if consumer i buys from from firm j and 0 otherwise. $p_{i j}$ is the payment from consumer i to firm j. Assume that all participants in the market have payoffs that are quasilinear in money.
(a) Describe the Pareto-Efficient allocations for this economy.
(b) Show that the core of this economy is empty.
5. (Harder, Crossover to Macroeconomics) A single, representative agent lives forever and consumes (and holds assets) optimally given the market prices. The preferences are represented by:

$$
U=\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right),
$$

where the per period utility from consumption c_{t} in period t is given by $u\left(c_{t}\right)=\frac{c_{t}^{1-\sigma}}{1-\sigma}(\mathrm{CRRA})$.
Endowments: The agent is endowed at $t=0$ with 1 tree. In each period, the tree yields stochastic consumption (dividend) d_{t} that cannot be stored. The dividend d_{t} evolves as follows:

- If $d_{t}=d_{t-1}$, then $d_{t+1}=d_{t}$ for all $t^{\prime}>t$.
- If $d_{t} \neq d_{t-1}$, then $d_{t+1}=\gamma d_{t}$ with probability π and $d_{t+1}=d_{t}$ with probability $1-\pi$, and $\gamma>1$.

In words: d grows at rate $\gamma-1$ until some random event occurs (with probability $1-\pi$), at which point growth stops forever.
Markets: There are competitive markets for consumption (choose this as numeraire) and trees (price p_{t}). Assume that p_{t} is cum dividend, meaning that d_{t} accrues to the household who buys the tree in t and holds it into $t+1$.
(a) State the agent's optimization problem paying particular attention to the intertemporal budget constraint:

$$
p_{t+1}\left(k_{t+1}-k_{t}\right)+c_{t}=d_{t} k_{t+1}
$$

where k_{t+1} denotes the holdings of trees from t to $t+1$. Derive the first-order condition characterizing the optimal consumptions in consecutive periods .
(b) Define a competitive equilibrium.
(c) Characterize the stochastic process of p_{t}. Is p_{t} a Markov process? Hint: there are 2 phases: before and after dividends have stopped growing. Assume that $\frac{p_{t} t}{d_{t}}$ is constant during the phase with growth.
(d) What happens to the stock market (i.e. p_{t}) when the economy stops growing? Does it crash (does the price decline)? Under what condition?

