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Week 49-2

LEARNING OUTCOMES

Students are able to solve the lecture problems, home problems, and exercise problems on

the topics of week 49:

  Virtual work densities of the Bernoulli and Timoshenko beam models

  Displacement analysis by beam elements

  Virtual work densities of the Reissner-Mindlin and Kirchhoff plate models

  Displacement analysis by plate models
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6.1 CONTINUOUS APPROXIMATIONS

Virtual work density expressions can be used with various approximation types in line,

rectangle, circular, etc. domains. Valid selections for a simply supported Kirchhoff plate in

bending on a rectangle domain [0, ] [0, ]L H    are, e.g.,

 Polynomial basis approximation 0( , ) ( )( )w x y a xy x L y H  

  Double sine series approximation 1 1( , ) sin( )sin( )n m
iji j

x yw x y a i j
L H

   

Although parameters 0a , ija  etc. of the continuous approximations on   may not be

displacements of certain points, the recipe for finding their values is the same as for the

nodal values and an approximation based on element interpolants on e   ( e    and
e  ).
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CONTINUOUS SERIES SOLUTION

To find an approximate solution with a continuous series approximations for

displacements/rotations and the virtual work density of a model

  Start with a linear combination of given functions with unknown coefficients (weights)

0 1, , , na a a . The series should satisfy the displacement/rotation boundary conditions no

matter the coefficients.

  Substitute the series into the virtual work density expressions and continue with the

recipe of the course to find the values of the coefficients.

Examples of useful function sets are polynomials of increasing order, harmonic functions

of decreasing wavelength, etc. Mathematically, the function set used should be complete so

that the interpolation error reduces in the number of terms.
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EXAMPLE 6.1 Consider pure bending of a rectangle Kirchhoff plate (0, ) (0, )L H   .

Derive the series solution 1 1( , ) sin( )sin( )iji j
x yw x y a i j
L H

  
    by considering the

coefficients ija  as the unknowns of the virtual work expression. Thickness t , Young’s

modulus E , and Poisson’s ratio  , and distributed load zf tg  in direction of z axis are

constants.

Answer 2
2 2 216 / [( ) ( ]1 )ij

f i ja
iD Lj H

 


  , {1,3,5, }i j  , 0ija   otherwise

x

y
 H

g

L



Week 49-6

 Shape functions need not to be polynomials. The well-known double sine-series solution

to plate bending problem on a rectangle is an example of this theme. The solution uses

the orthogonality properties of the sine and cosine functions (like)

0 2
sin( )sin( )

L
ij

x xi j dx
L L

L       and
0

[1 ( 1) ]sin( )
L ixi dx L

iL 
   

0 2
sin( )sin( )

H
ij

y yi j dy
H H

H      and
0

[1 ( 1) ]sin( )
H iyi dy H

iH 
   

 When the series approximation is substituted there, virtual work expression becomes a

variational expression for the unknown coefficients. Using then orthogonality of the

sines and cosines on (0, ) (0, )L H   , virtual work expressions of the internal and

external forces boil down to
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3
int 2 2 2

1 1 2 [( ) ( ) ]
412(1 )

ij iji j
Et i jW a aH

H
L

L
  


 
   


  ,

ext
1 1 ij iji jW a f  
    , where

0 0
( , )sin( )sin( )

L H
ij

x yf f x y i j dxdy
L H

    .

 As the terms are not connected in the virtual work expression (the matrix of the equation

system implied by the principle of virtual work is diagonal), the fundamental lemma of

variation calculus implies that

2
2 2 216 / [( ) ( ]1 )ij

f i ja
iD Lj H

 


  , {1,3,5, }i j  . 

 With 5mL H  , 1cmt  , 210GPaE  , 0.3  , 3
kg8000
m

  , 2
m9.81
s

g  , and

100 terms.
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6.2 BEAM MODEL

                                      Timoshenko               Bernoulli

Normal planes to the (material) axis of beam remain planes (Timoshenko) and normal to

the axis (Bernoulli) in deformation. Mathematically Q P PQu u    
   (rigid body motion

with translation point P). In addition, normal stress in small dimensions vanishes.
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 In terms of the displacement components ( )u x , ( )v x , ( )w x  and rotation components

( )x , ( )x , ( )x  of the translation point, the Timoshenko model displacement

components are ( ( ) ( ) ( )u ui vj wk i j k yj zk         
       )

( , , ) ( ) ( ) ( )xu x y z u x x z x y    ,

( , , ) ( ) ( )yu x y z v x x z  ,

( , , ) ( ) ( )zu x y z w x x y 

In Bernoulli model, additionally /dw dx    and /dv dx    so that normal planes

remain normal to the axis.

 The kinematic assumption of the beam model means that 0zz yy   .
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EXAMPLE 6.2. Consider the beam of length L  shown. Material properties E  and G , cross-

section properties A and I , and loading f are constants. Determine the deflection and

rotation ( /dw dx   ) at the free end according to the Bernoulli beam model.

Answer
4

8
( ) f L

EI
w L  and

3
)

6
( ) ( f L

EI
dwL L
dx

   

L
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 Mathematica solution according to the Bernoulli model is obtained with the problem

description:



Week 49-13

EXAMPLE 6.3. Consider the beam of length L  shown. Material properties E  and G , cross-

section properties A and I , and loading f are constants. Determine the deflection and

rotation at the free end according to the Timoshenko beam model.

Answer
4

2 )1( ) ( 41
8 z

w f L EI
EI G

L
AL

  and
31

6
( ) f L

EI
L 

”Timoshenko  effect”
~ 1+(t/L) 2 L
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 Mathematica solution according to the Timoshenko model is obtained with the problem

description ( 6 / 7y z    are the shear correction factors for a circular cross-section):
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BEAM MODEL VIRTUAL WORK DENSITY

Beam element combines the bar, torsion, and the xz-plane and xy-plane bending modes

T

int 2 2 2 2

2 2 2 2

/ /

/ /

/ /

z y

z zz zy rr

y yz yy

d u dx du dxA S S
d dw d v dx E S I I d v dx GI
dx dx

S I Id w dx d w dx


  




     
    

       
         

,

T T

ext /
/

x x

y y

z z

u f m
w v f d w dx m

w d v dxf m

 
  

 


      
               

       
      

.

Bar and bending modes are connected unless the first moments zS , yS and the cross moment

zyI  (off-diagonal terms of the matrix) of the cross-section vanish.
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  If the loading modes are not connected, the simplest element interpolants

(approximations) to u  and   are linear and those for v  and w  cubic ( /x h  ):

T
1

2

1
( ) x

x

u
u x

u



   

    
   

  and
T

1

2

1
( ) x

x
x





   

    
   

,

T2
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2
1

2 2

2 2

(1 ) (1 2 )

(1 )
( )

(3 2 )
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and

T2
1

2 1
2 2

2 2

(1 ) (1 2 )

(1 )
( )

(3 2 )

( 1)

z

y

z

y

u

h
w x

u
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.

If the loading modes are connected, a quadratic three-node interpolant (approximation) to

u  is needed. Therefore, the clever selection 0y zS S   and 0yzI   of the material

coordinate system simplifies calculations a lot.
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BEAM COORDINATE SYSTEM

The x-axis of the material system is aligned with the axis of the body. The coordinates of

end nodes define the components of i


. The orientation of j


 is one of the geometrical

parameters of the element contribution and it has to be given in the same manner as the

moments of area.

NOTICE: Mathematica code assumes that the y and Y axes are aligned, i.e., j J


 unless

the direction of y-axis is specified explicitly in the beam element description.
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MOMENTS OF CROSS-SECTION

Cross-section geometry of a beam have effect on the constitutive equation through moments

of area (material is assumed to be homogeneous):

Zero moment: A dA 

First moments: zS ydA     and yS zdA 

Second moments: 2
zzI y dA  , 2

yyI z dA  ,  and yzI yzdA 

Polar moment: 2 2
rr zz yyI y z dA I I   

The moments depend on the selections of the material coordinate system. The origin and

orientation can always be chosen so that 0z y yzS S I   .
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EXAMPLE 6.4. The beam of the figure is loaded by its own weight and a point force acting

on the right end. Determine the displacement and rotation of the right end starting with the

virtual density of the Bernoulli beam model. The x-axis of the material coordinate system is

placed at the geometric centroid of the rectangle cross-section. Beam properties A, yyI , zzI

and E  of the planar problem are constants.

Answer: 2X
FLu
EA

  and
3

2
1
48Y

yy

gAL
EI
 

L

Z,z

X,x

F
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 The left end of the beam is clamped and the right end simply supported. As the material

and structural coordinate systems coincide 2 2x Xu u  and 2 2y Y  , the

approximations of u  and w  simplify to

2
2

2

/

( / ) (1 / )
X

Y

x Luu
w L x L x L 

       
    

 2
2 2

2

/ 1
(2 6 / )/

X

Y

du dx u
x LLd w dx 

            
.

 The moments of cross-section 0y zS S  , yyI , zzI and 0yzI  . As here 0v   ,

0x yf f   and 0x y zm m m   , virtual work densities take the forms

T
int

2 2 2 2

/ /0
0/ /yy

d u dx du dxEA
w

EId w dx d w dx







            
       

  and
T

ext 0u
w

w gA



 
   

    
   



T
2 2int

22
2 2

0

0 (2 6 / )
X X

Y Yyy

Au uEw
I x LL




 
    

      
     

,
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T
2ext

2
2

0

( / ) (1 / )
X

Y

u
w

L x L x L gA




 


        
    

.

 Integrations over the domain ]0, [L  give the virtual work expressions

T
2 2int int

2 2

0
0 4

X X

yyY Y

Au uEW w d IL


 
 

    
       

    
 ,

T 2
2ext ext

2

0
112

X

Y

u gALW w d
  


   
      

  
 

T 2
2 21 int ext

2 2

0 0
( )0 4 112

X X

yyY Y

Au uE gALW W W IL
   
 

      
          

     
.



Week 49-22

  Virtual work expression of the point force follows from definition of work (or from the

expression of formulae collection)

T
22

2 0
X

Y

u F
W





   

    
  

.

  Principle of virtual work 1 2 0W W W      a  and the fundamental lemma of

variation calculus give

T
2 2

2
2 2

0
( )0 4 /12

X X

yyY Y

FAu uEW IL gAL




  

               
       

2

2

X

Y

u


 
 
 



2
2

2

0
0

0 4 /12
X

Y

FuAE
IL gAL 

          
      

 2
3

2

/

/ (48 )
X

Y yy

LF EAu
gAL EI 

       
    

. 
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  Solution by the Mathematica code is obtained with the following problem description

tables
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EXAMPLE 6.5. The Bernoulli beam of the figure is loaded by its own weight and a point

force acting on the right end. Determine the displacement and rotation of the right end

starting with the virtual density of the Bernoulli beam model. The x-axis of the material

coordinate system is placed at the geometric centroid of the rectangle cross-section. Beam

properties A, yyI , zzI  and E  are constants.

Answer: 2X
FLu
EA

 and
3

2
1
48Y

zz

gAL
EI
 

L

Z,y

X,x

F
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  Beam element definition of the Mathematica code requires the orientation of the y axis

unless y   and Y axes are aligned. Orientation is given by additional parameter

defining the components of j


 in the structural coordinate system:
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TIMOSHENKO BEAM VIRTUAL WORK DENSITY

Timoshenko beam model takes into account transverse displacements due to shear. As the

assumptions are less severe than those of the Bernoulli beam model, modelling error is

smaller.
T T

int
/ / /
/ / /
/ / /

z y

z zz zy

y yz yy

A S Sd u dx du dx d v dx
w d dx E S I I d dx d w dx

d dx d dx d dxS I I

  
    

   


                          
              

0 /
0 /

/

y

z

y z rr

A S dv dx
G A S dw dx

S S I d dx






    
      

     

,

T T

ext
x x

y y

z z

u f m
w v f m

w f m

 
  

 


      
              

       
      

.

If 0z yS S   and 0yzI  , bar, torsion, and bending modes contribute to the virtual work

expression as if they were separate bar, torsion and bending elements.



Week 49-27

 Beam is a thin body in two dimensions

 The kinematic assumption of the Timoshenko beam model and definition of strain give

the displacement and the non-zero strain components ( /R dv dx    ,

/R dw dx   )

( , , ) ( ) ( ) ( )
( , , ) ( ) ( )

( ) ( )( , , )

x

y

z

u x y z u x z x y x
u x y z v x z x

w x y xu x y z

 



    
       
     



x
y

z

S
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xx
du d dz y
dx dx dx

        and
/ /

/ /
xy

zx

dv dx zd dx
dw dx yd dx

  
 

               
.

 The kinetic assumptions 0zz yy    and the generalized Hooke’s law give the non-

zero stress components

( )xx xx
du d dE E z y
dx dx dx

        and
/ /

/ /
xy

zx

dv dx zd dx
G

dw dx yd dx
  

 

               
.

 With notation 2 2 2r y z   the generic expressions for the virtual work densities per unit

volume simplify to (some manipulations are needed here)

T T

int
/ 1 / /
/ / /
/ / /

V

d u dx y z du dx d v dx
w d dx E y yy yz d dx d w dx

d dx z zy zz d dx d dx
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2

1 0 /
0 1 /

/

z dv dx
G y dw dx

d dxz y r






    
      

     

,

T T

ext
y zx

V y x

xz

zf yfu f
w v f zf

w yff

 
  

 

      
             

             

,

T T

ext
y zx

A y x

xz

zt ytu t
w v t zt

w ytt

 
  

 

      
             

             

.

 Virtual work density of the internal forces is obtained as an integral over the small

dimensions which is the cross-section (the volume element dV dAd ).
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T T

int
/ / /
/ / /
/ / /

z y

z zz zy

y yz yy

A S Sd u dx du dx d v dx
w d dx E S I I d dx d w dx

d dx d dx d dxS I I

  
    

  


                          
              

0 /
0 /

/

y

z

y z rr

A S dv dx
G A S dw dx

S S I d dx






    
      

     

.

 The contributions coming from the external forces follow in the same manner. Assuming

that the volume force is constant (in an element) and that the surface forces are acting

on the end surfaces only, the expressions become

T T

ext
x x

y y

z z

u f m
w v f m

w f m

 
  

 


      
              

       
      

and

T T

ext
x x

y y

z z

u F M
W v F M

w F M

 
  

 

      
              

       
      

.
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The last contribution is taken care of by a point force element in the Mathematica code.

IMPORTANT. The simplest possible linear approximation to the displacement and

rotation components does not give a good numerical method unless numerical tricks like

under-integration etc. are applied. To avoid numerical problems, approximations should be

chosen cubic even if the exact solution is a simple polynomial! The Mathematica code uses

a cubic approximation to all the unknowns and static condensation to end up with a two-

node element.
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EXAMPLE 6.6. A structure is modeled by using 16 beams and 4 rigid bodies. Assuming

that a point force with the magnitude F is acting as shown in the figure, determine the

displacement of the point of action in the direction of the force.

w

l

h h h h

t

d
X

Y

Z
1

2

3

4

591418

6101418

8121620

7111519

21222324

F
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 Rigid bodies can be modelled by using a one node force element and rigid links with the

other nodes. The problem description tables are given in the examples section of the

Mathematica solver. The displacement of node 20 in the direction of X axis as given

by the solver is

3 2 2 2

20 4 2 2 2 2 2
16 64 4 3( )
3 4 2 / 3 3

X
Fh d l wu
d E d l h G E l w


 

  

 If 3 2210 10 N/mmE   , 3 280 10 N/mmG   , 6.9mmd  , 408mml  , 263mmw  ,

170mmh  , 69 NF  , the displacement

20 1.56mmXu  .
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6.3 PLATE MODEL

                                      Reissner-Mindlin               Kirchhoff

Straight line segments perpendicular to the reference-plane remain straight in deformation

(Reissner-Mindlin) and perpendicular to the reference-plane (Kirchhoff). In addition,

transverse normal stress component is negligible.

w

x
z

P

P’
Q’
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θ

w
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 Normal line segments to the reference-plane move as rigid bodies. In terms of the

displacement components ( , )u x y , ( , )v x y , ( , )w x y  and rotation components ( , )x y ,

( , )x y  of the translation point at the reference-plane, the displacement components are

given by ( ) ( )u ui vj wk i j zk      
     ). In component form

( , , ) ( , ) ( , )xu x y z u x y x y z  ,

( , , ) ( , ) ( , )yu x y z v x y x y z  ,

( , , ) ( , )zu x y z w x y .

In the Kirchhoff model ( , )u x y , ( , )v x y , ( , )w x y  and /w y     and /w x     define

the displacement field.

Rotation component in the
z-direction is missing!
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KIRCHHOFF PLATE VIRTUAL WORK DENSITY

Virtual work densities combine the plane-stress thin slab and the plate bending modes which

disconnect if the first moment of thickness vanishes.  Virtual work densities of the bending

mode of the Kirchhoff plate are

T2 2 2 2
3

int 2 2 2 2

2 2

/ /

/ [ ] /
12

2 / 2 /

w x w x
tw w y E w y

w x y w x y




 




      
              
   
           

,
/

( )
/

w y
w x




    
       

ext
zw wf   .

The planar solution domain (reference-plane) can be represented by triangular or rectangular

elements. Interpolation of displacement components ( , )w x y  should be continuous and have

also continuous derivatives at the element interfaces.



Week 49-37

 The severe continuity requirement of the approximation at the element interfaces is

problematic in practice and cannot be satisfied with a simple interpolation of the nodal

values. The figure illustrates the shape functions corresponding to displacement and

rotation at a typical node in a patch of 4 square elements. The shape functions vanish

outside the patch. In the course, Kirchhoff model is used only in calculations with

domains of one element (no interfaces - no problems).
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EXAMPLE 6.7. Consider a plate strip loaded by its own weight. Determine the deflection

w  according to the Kirchhoff model. Thickness, length of the plate are t , L , and h,

respectively. Density  , Young’s modulus E , and Poisson’s ratio  are constants. Use the

one parameter approximation 0
2 2(1 / ) )( ) ( /x Lx a xw L .

Answer:
4

2 2 2
22

( )( ( )1 1 )w gL x
E

x
L Lt

   

x,X

y,Yz,Z

L

h



Week 49-39

  Approximation satisfies the boundary conditions ‘a priori’ and contains a free parameter

0a  (not associated with a node) to be solved by using the principle of virtual work:

2 2
0 1 (( ) )x x

L
w a

L
 

2

0
2

2 2
2 [1 ]6 6( )

L
w a x x

L Lx






  and

2 2

2 0w w
x yy

 
 
 

.

 When the approximation is substituted there, virtual work densities simplify to

0
2

3
int 2

0 2 4 6 61 [1 ]
3(1 )

( )Etw a a
LL

x x
L

 


   


,

2ext
0

2 ((1 ) )x xa t
L L

w g      .

 Integrations over the domain ]0, [ ]0, [L h   give the virtual works of internal and

external forces
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t
3

3
int in

0 0 2(1 )
1

15
hEtW w d

L
a a  




   
 ,

ext ext
0

1
30

W w d ha Lgt   
    .

 Principle of virtual work int ext 0W W W      a  and the fundamental lemma of

variation calculus give finally 0a

3

0230 (
(1

0
)

1 1 )
15 30

hEtW a a g Lh
L

t  


 


 
4

2
0 2 (1 )1

2
ga
Et

Lt    . 
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EXAMPLE 6.8. A rectangular plate is loaded by its own weight. Determine the deflection

of the plate at the free end by using the Kirchhoff plate model and one element. Thickness,

width, and length of the plate are t , h  and L , respectively. Density  , Young’s modulus E

, and Poisson’s ratio  of the material are constants. Assume that deflection w  depends only

on x .

Answer:
4

2
2 2

3( ) (1 )
2Z

g Lw L u
Et
       (Bernoulli beam

4

2
3( )
2

g Lw L
Et


 )

x,X

y,Y
z,Z

L

h
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 As the solution is assumed to depend on x  only and the material and structural coordinate

systems coincide, one may use the cubic approximation of the Bernoulli beam model

(bending in xz plane and /x L  ). Let us denote the displacement and  rotation at the

free end by 2 2z Zu u  and 2 2y Y   to get

T2

T2 2
2

2 22 2

2 2

(1 ) (1 2 ) 0
0(1 ) (3 2 / )( / )

(3 2 ) ( / ) ( / 1)

(

  

1

  

)

Z

Z Y

Y

uL x L x L
w

u L x L x L

L

 

 
 

 

                        
         

     



T2
2

2 2 2

6( 2 ) /1
2( 3 )

Z

Y

uL x Lw
L xx L 
   

         
  and

T2
2

2 2
2

6( 2 ) /1
2( 3 )

Z

Y

u L x Lw
L xx L




   
        

.

 When the approximation is substituted there, virtual work densities simplify to
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2T3 22 2int
2 4 2 22

1 1(6 12 ) (2 6 )(6 12 )

112(1 ) (2 6 )(6 12 ) (2 6 )

Z Z

Y Y

L x L x L xu uEt LLw
L L x L x L x
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Y
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 Integrations over the domain ]0, [ ]0, [L h   give the virtual works of internal and

external forces

T3
2 2int int

22 3 2 2

12 6

6 412(1 )
Z Z

Y Y

Lu uEt hW w d
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 Principle of virtual work int ext 0W W W      a  and the fundamental lemma of

variation calculus give finally

T 3
2 2

22 32 2

12 6 6
( ) 0

126 412(1 )
Z Z

Y Y

Lu uEt h gthLW
LL LL
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2 4
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u gt L
LEt

 

   

     
. 

A more detailed analysis may give dependence on y coordinate which was excluded

by the displacement assumption of the simplified analysis.



Week 49-45

REISSNER-MINDLIN PLATE VIRTUAL WORK DENSITY

Virtual work densities combine the thin slab and plate bending modes which disconnect if

the first moment of thickness vanishes. Virtual work densities of the Reissner-Mindlin plate

bending mode are

T
T3

int
/ /

/
/ [ ] /

/12
/ / / /

x x
w ytw y E y tG
w x

x y x y


 
 

  
 

   


      
                                    

,

/
/

w y
w x




   
    

, ext
zw wf   .

The planar solution domain can be represented by triangular or rectangular elements.

Interpolation of displacement and rotation components ( , )w x y , ( , )x y , and ( , )x y  should

be continuous at the element interfaces.
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  Plate is a thin body in one-dimension

  Normals to the reference plane (not necessarily the symmetry or mid-plane) remain

straight in deformation. Kinematic assumption ( ) ( )u ui vj wk i j zk      
      gives

the displacement components and strains

( , ) ( , )
( , ) ( , )
( , ) 0

x

y

z

u u x y x y
u v x y z x y

w x yu




     
            
     

    



x
y

z
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/ /
/ /

/ / / /

xx

yy

xy

u x x
v y z y

u y v x y x

 
 

 

                        
                   

 and
/
/

yz

zx

w y
w x

 


                
.

  The constitutive equations of a linearly elastic isotropic material and kinetic assumption

0zz   give the non-zero stress components

2

1 0
1 0

1 0 0 (1 ) / 2

xx xx

yy yy

xy xy

E
  
  

  

                          

 and yz yz

zx zx
G

 

 

         
      

.

 The generic expression of int
Vw  simplifies to a sum of thin slab, bending, transverse

shear and interaction parts of which the last vanishes if the material is homogeneous and

the reference plane coincides with the symmetry plane. With that assumption
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T

int
/ /
/ [ ] /

/ / / /
V

u x u x
w v y E v y

u y v x u y v x



 

 

      
           
               

,

T

int 2
/ /
/ [ ] /

/ / / /
V

x x
w y z E y

y x y x


 
  

   

      
           
               

,

T
int / /

/ /V
w y w y

w G
w x w x

  


  
        

            
.

 The generic expressions of ext
Vw  and ext

Aw  simplify to

thin slab part

bending part

shear part
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T T T

ext ( )
0

x x x

V y y y

z z z

u f u f
w u f v z f

wu f f

  
   

 

        
                    
         

        

,

T T T

ext ( )
0

x x x

A y y y

z z z

u t u t
w u t v z t

wu t t

  
   

 

        
                    
         

        

.

 The virtual work of internal forces is obtained as integral over the domain occupied by

the body (here the volume element dV dzd  ). If [ / 2, / 2]z t t 

T

int
/ /
/ [ ] /

/ / / /

u x u x
w v y t E v y

u y v x u y v x



 

 


      
           
               

,
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T
3

int
/ /
/ [ ] /

12
/ / / /

x x
tw y E y

y x y x


 
  

   


      
           
               

,

T
int / /

/ /V
w y w y

w tG
w x w x

  


  
        

            
.

 The contributions coming from the external forces follow in the same manner. Assuming

that the volume force is constant (in an element), the surface forces do not act on the top

and bottom surfaces, the expression simplifies to

T T

ext
x x

y y

z z

u f u t
W v f d v t d

w wf t

 
  

 
 

      
               

       
      

  . 
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 As the virtual work expression contains only first derivatives, the approximation should

be continuous. Continuity requirement does not introduce any problems here and one

may choose e.g.

1

2

3

4

(1 )(1 )
(1 )

(1 )

w
w

w
w
w

 
 

 


    
         

    

,

1

2

3

4
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(1 )

 
 


 


    
         

    

, and

1

2

3

4

(1 )(1 )
(1 )

(1 )

 
 


 


    
         

    

.

IMPORTANT. Reissner-Mindlin plate model shares the numerical difficulties of the

Timoshenko beam model and, in practice, finite element methods using low order

approximations, e.g. linear or quadratic approximations on a triangle, suffer from severe

shear locking that can be avoided only with carefully designed tricks.
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EXAMPLE 6.9 A rectangular plate is loaded by its own weight. Determine the deflection

of the plate at the free end by using the Reissner-Mindlin plate model with bi-linear, bi-

quadratic and bi-cubic approximations. Thickness, width, and length of the plate are t , b

and L , respectively. Density  , Young’s modulus E , and Poisson’s ratio   of the material

are constants. Consider finally the limit G  .

Answer:
4

2
2 4 2

3( ) (1 )
2Z Z

g Lw L u u
Et
        (Bernoulli beam

4

2
3( )
2

g Lw L
Et


 )

x,X

y,Y t, E, ν, ρ
z,Z

g

L
b
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 The solutions given by the Mathematica code of the course are

 Bi-linear: ( ) 0w L  

Bi-quadratic:
4

2
2( ) (1 )g Lw L

Et
   

Bi-cubic:
4

2
2

3( ) (1 )
2

g Lw L
Et
   

Therefore, approximations to the unknown functions should be cubic for a precise

prediction.


