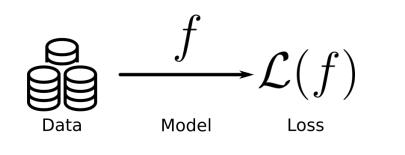
# **Entropy Regularization** in **RL**

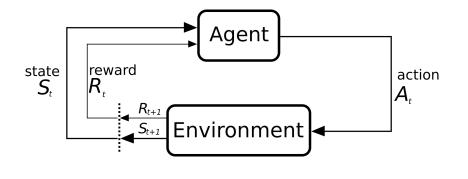
**Riad Akrour** 

November 9, 2021

#### Data Sources in ML

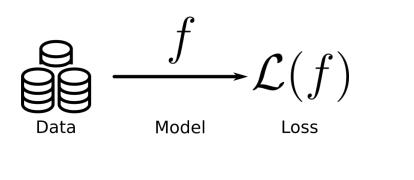


(Un)supervised Learning



**Reinforcement Learning** 

#### Data Sources in ML



(Un)supervised Learning

state  $S_t$  reward  $R_t$  action  $A_t$ 

Agent

**Reinforcement Learning** 

• i.i.d. dataset: agent learns from and is used

on data with the same distribution

- Constant change to data generating process (at least in online RL)
- Large emphasis on out of distribution generalization

# Successes of Machine Learning

- (Un)supervised Learning
  - Machine translation, Speech recognition
  - Al image upscaling
  - Drug discovery



- Reinforcement Learning
  - <u>Backgammon</u> (Tesauro et al., 94), <u>Chess</u> (Hsu et al., 96),
     <u>Atari</u> (Mnih et al., 13), <u>Go</u> (Silver et al., 16)
  - Limited to game domains (closed world, unlimited data)



### RL in the Physical World



- Small number of parameters (<20)
- Initialize from expert demonstrations
- Black-box optimization

**High Acceleration Reinforcement Learning for Real-World Juggling with Binary Rewards** K. Ploeger, M. Lutter, J. Peters CoRL20

# Learning Goals

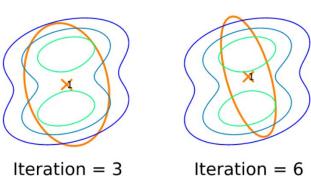
- Entropy Regularization in RL
  - Algorithms overview
    - From black-box optimization to deep reinforcement learning
  - Why is it important?

#### Relative Entropy Policy Search (REPS)

• For Gaussian search distribution  $\pi_k( heta) = \mathcal{N}( heta|\mu_k, \Sigma_k)$ , update following

$$\max_{\pi_k} \quad \mathbb{E}_{\theta \sim \pi_k} \left[ R(\theta) \right]$$
 (Maximize rewards)  
 $s.t. \quad \mathrm{KL} \left( \pi_k || \pi_{k-1} \right) \leq \epsilon$  (Do not change policy too much)

Deisenroth et al.

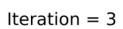


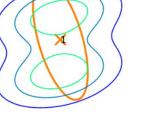
### Relative Entropy Policy Search (REPS)

• For Gaussian search distribution  $\pi_k(\theta) = \mathcal{N}(\theta | \mu_k, \Sigma)$ 

 $\max_{\pi_k} \quad \mathbb{E}_{\theta \sim \pi_k} \left[ R(\theta) \right]$ s.t.  $\operatorname{KL} \left( \pi_k || \pi_{k-1} \right) \le \epsilon$ 

Deisenroth et al.





Iteration = 6

#### Kullback-Leibler divergence

$$\operatorname{KL}(p||q) = \int p(x) \log \frac{p(x)}{q(x)} \mathrm{d}x$$

- KL-divergence is <u>always positive</u>
- is <u>equal to 0</u> if p is q
- For <u>Gaussians</u>, it grows if e.g. the
  - mean shifts
  - covariance matrix rotates
  - covariance matrix shrinks

#### Relative Entropy Policy Search (REPS)

• For Gaussian search distribution  $\pi_k( heta) = \mathcal{N}( heta|\mu_k, \Sigma_k)$ , update following

$$\max_{\pi_k} \quad \mathbb{E}_{\theta \sim \pi_k} \left[ R(\theta) \right]$$
 (Maximize rewards)  
 $s.t. \quad \text{KL} \left( \pi_k || \pi_{k-1} \right) \le \epsilon$  (Do not change policy too much)

• Closed-form solution in probability space

$$\pi_k \propto \pi_{k-1} \exp\left(rac{R}{\eta}
ight)\,$$
 With  $\eta$ , the dual variable of the Lagrangian function

A Survey on Policy Search for Robotics (Chap. 2.4.3); M. Deisenroth, G. Neumann, J. Peters; Foundations and Trends in Robotics, 2013

#### REPS – Algorithm

- Sample  $\{\theta_1, \dots, \theta_k\}$  from (Gaussian)  $\pi_{k-1}$
- Evaluate parameters and get {R( $\theta_1$ ), ..., R( $\theta_K$ )}
- Optimize dual function and get  $\eta$
- $\pi_k \propto \pi_{k-1} \exp\left(\frac{R}{\eta}\right)$ :
  - Can evaluate distribution at sample points  $\{\theta_1, \dots, \theta_k\}$  up to normalization factor
  - Want  $\pi_k$  to remain Gaussian for easy sampling

-> maximum likelihood fit of Gaussian  $\pi_k$  to samples { $\theta_1$ , ...,  $\theta_K$ } with weights  $w_i = \pi_{k-1}(\theta_i) \exp\left(\frac{R(\theta_i)}{\eta}\right)$ 

A Survey on Policy Search for Robotics (Chap. 2.4.3); M. Deisenroth, G. Neumann, J. Peters; Foundations and Trends in Robotics, 2013

#### REPS – Limitations (1/2)

- Bias in density estimation
  - If environment is stochastic  $R(\theta_1)$  is a random variable
    - Performance of  $\theta_1$  is given by expected return  $E[R(\theta_1)]$
    - $E[R(\theta_1)]$  can be approximated by (unbiased) Monte Carlo estimate  $\hat{R}(\theta_1) = \frac{1}{N} \sum R^{[i]}(\theta_1)$
  - Because of exp func., unbiased estimators of  $E[R(\theta_1)]$  still yields biased estimate of density

$$\blacksquare E\left[\exp\left(\frac{\hat{R}(\theta_1)}{\eta}\right)\right] \ge \exp\left(\frac{E\left[\hat{R}(\theta_1)\right]}{\eta}\right) \ge \exp\left(\frac{E[R(\theta_1)]}{\eta}\right) \quad \text{(Jensen's inequality + unbiasedness)}$$

Equality if there is no variance otherwise overestimation

### REPS – Limitations (2/2)

- <u>KL-divergence violation from maximum likelihood step</u>
  - Although  $\pi_{k-1} \exp\left(\frac{R}{\eta}\right)$  satisfies KL-divergence cst., its Gaussian approximation  $\pi_k$  might not
  - Especially true if sample set  $\{\theta_1, \dots, \theta_k\}$  is small
    - Gaussian distribution can quickly converge to a point mass with little to no variance

• An alternative update:  $\pi_{k-1}$  is Gaussian and if R is quadratic and concave then  $\pi_{k-1} \exp\left(\frac{R}{n}\right)$  Gaussian!

### Model-based REPS (MORE)

• For Gaussian policies 
$$\pi_k(\theta) = \mathcal{N}(\theta | \mu_k, \Sigma_k)$$

$$\begin{array}{ll} \max_{\pi_k} & \mathbb{E}_{\theta \sim \pi_k} \left[ \hat{R}(\theta) \right] & \text{(Maximize rewards)} \\ s.t. & \mathrm{KL} \left( \pi_k || \pi_{k-1} \right) \leq \epsilon & \text{(Do not change policy too much)} \\ & \mathcal{H}(\pi_{k-1}) - \mathcal{H}(\pi_k) \leq \beta & \text{(Prevent premature convergence)} \end{array}$$

Closed-form solution in probability space

 $\pi_k \propto \pi_{k-1}^{\eta/(\eta+\omega)} \exp\left(rac{\hat{R}}{\eta+\omega}
ight)$  for dual variables  $\eta$  and  $\omega$  of the Lagrangian function

• Closed-form solution in parameter space (no maximum likelihood step)

Model-Based Relative Entropy Stochastic Search; A. Abdolmaleki, R. Lioutikov, N. Lau, L. Reis, J. Peters, G. Neumann; NeurIPS15

# Model-based REPS (MORE)

• For Gaussian policies 
$$\pi_k( heta) = \mathcal{N}( heta|\mu_k, \Sigma_k)$$

- $$\begin{split} \max_{\pi_k} & \mathbb{E}_{\theta \sim \pi_k} \left[ \hat{R}(\theta) \right] & \text{(Max)} \\ s.t. & \mathrm{KL} \left( \pi_k || \pi_{k-1} \right) \leq \epsilon & \text{(Do not or} \\ & \mathcal{H}(\pi_{k-1}) \mathcal{H}(\pi_k) \leq \beta & \text{(Preven)} \end{split}$$
- Closed-form solution in probability space

$$\pi_k \propto \pi_{k-1}^{\eta/(\eta+\omega)} \exp\left(rac{\hat{R}}{\eta+\omega}
ight)$$
 for dual var

• Closed-form solution in parameter space (no m

Model-Based Relative Entropy Stochastic Search; A. Abdolmaleki, R. Lioutikov, N.

#### **KL-divergence**

- For Gaussians, it grows if e.g. the
  - mean shifts
  - covariance matrix rotates
  - covariance matrix shrinks

#### **Entropy difference**

- For Gaussians, it grows if the
  - $\circ \quad \text{ covariance matrix shrinks} \\$

Having both **decouples** the control of matrix shrinkage from the rest. Typically **in practice**: move mean/rotate covariance at faster rate than shrink covariance

Entropy Regularization in RL

### MORE – Algorithm

- Sample  $\{\theta_1, \dots, \theta_k\}$  from (Gaussian)  $\pi_{k-1}$
- Evaluate parameters and get {R( $\theta_1$ ), ..., R( $\theta_K$ )}
- Fit quadratic model  $\hat{R}$  to data (regression problem)
- Optimize dual function and get  $\eta$  and  $\omega$
- Compute  $\pi_k$  from  $\pi_{k-1}$ ,  $\hat{R}$  ,  $\eta$  and  $\omega$
- <u>Limitation</u>: regression problem manageable for cleverly parameterized (and closed-loop) policies
  - Impractical if e.g.  $\theta$  parameters of neural network

Model-Based Relative Entropy Stochastic Search; A. Abdolmaleki, R. Lioutikov, N. Lau, L. Reis, J. Peters, G. Neumann; NeurIPS15

# Step-based MORE (MOTO)

- For linear-Gaussian policies  $\pi_k^t(a_t|s_t) = \mathcal{N}\left(a_t|K_ts_t, \Sigma_t\right)$   $\max_{\pi_k^t} \quad \mathbb{E}_{s \sim p_{k-1}^t, a \sim \pi_k^t(.|s)} \left[\hat{Q}_{k-1}^t(s, a)\right]$ 
  - s.t.  $\mathbb{E}_{s \sim p_{k-1}^t} \left[ \mathrm{KL} \left( \pi_k^t(.|s) || \pi_{k-1}^t(.|s) \right) \right] \leq \epsilon$  $\mathbb{E}_{s \sim p_{k-1}^t} \left[ \mathcal{H}(\pi_{k-1}^t(.|s)) \mathcal{H}(\pi_k^t(.|s)) \right] \leq \beta$

(Closed loop policy)

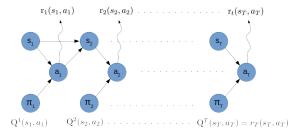
(Maximize returns)

(Promote monotonic improvements)

(Prevent premature convergence)

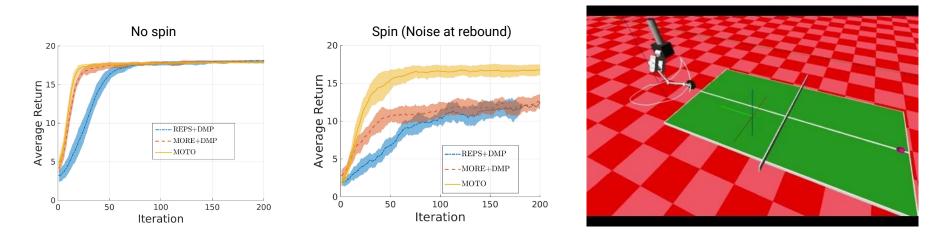
• Closed-form solution in probability space and parameter space  $\pi_k^t(.|s) \propto \pi_{k-1}^t(.|s)^{\eta/(\eta+\omega)} \exp\left(\frac{\hat{Q}_{k-1}^t(s,.)}{\eta+\omega}\right)$ 

for dual variables  $\eta$  and  $\omega$  of the Lagrangian function



Model-free Trajectory-based Policy Optimization with Monotonic Improvement; R. Akrour, A. Abdolmaleki, H. Abdulsamad, J. Peters, G. Neumann; JMLR18

# Open-Loop vs Closed Loop on Table Tennis



- Comparable to black-box methods with open-loop policies despite much larger search space (x800)
- Closed-loop nature of the policy copes with noisy environments
- Closed-form update outperforms control algorithms and TRPO (deep RL) on benchmark problems

Model-free Trajectory-based Policy Optimization with Monotonic Improvement; R. Akrour, A. Abdolmaleki, H. Abdulsamad, J. Peters, G. Neumann; JMLR18

#### MOTO – Limitation

- Linear Gaussian policies ill-suited for
  - Infinite horizon problems and in general problems with long (>150) planning horizons
  - Complex inputs (images, graphs...)

- <u>An alternative</u>: MPO algorithm [1]
  - Mean of policy given by neural network (or any other differentiable model)
  - Maximum likelihood step as in REPS but with additional KL-divergence constraint during fit

[1] Maximum A Posteriori Policy Optimisation; A. Abdolmaleki, J. Springenberg, Y. Tassa, R. Munos, N. Heess, M. Riedmiller; ICLR18

#### Natural Gradient and Deep RL – TRPO

- Around parameters  $\theta$  of data generating policy  $\pi_{k-1}$ 
  - Compute gradient g of objective  $E_{s \sim p_{k-1}, a \sim \pi_k(. \mid s)} \Big[ \hat{A}_{k-1}(s, a) \Big]$  for a first order approximation
  - Compute Hessian *F* of KL-divergence constraint for a second order approximation
- Approximated constrained problem admits closed form solution  $\theta + \alpha F^{-1}g$  (so called Natural Gradient)
- Additional computational tricks:
  - $\circ$  Find NG by minimizing  $\|Fp-g\|^2$  using conjugate gradient algorithm
  - Compute *Fp* by computing gradient(<gradient(KL), p>)
  - Add linesearch to ensure KL-divergence constraint is satisfied
- Works well on medium scale problems and more stable than other deep RL algorithms

Trust Region Policy Optimization; S. Schulman, S. Levine, P. Moritz, M. Jordan, P. Abbeel; ICML15

# Gradient Clipping and Soft Constraints – PPO

- Solves the same optimization problem as TRPO (maximize advantage under KL-divergence constraint)
- Optimization routine of TRPO can be a bit slow when dealing with very large networks
  - PPO introduces tricks to (heuristically) tackle the optim. problem with vanilla gradient descent
- Main trick is clipped loss
  - Zero contribution (the gradient) of state-action pairs if  $\frac{\pi_k(a \mid s)}{\pi_{k-1}(a \mid s)}$  deviates too much from 1
  - Implies a total variation 'constraint' between  $\pi_k$  and  $\pi_{k-1}$

Proximal Policy Optimization Algorithms; S. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov; 2017

# Gradient Clipping and Soft Constraints – PPO

- Solves the same optimization problem as TRPO (maximize ady
- Optimization routine of TRPO can be a bit slow when dealin
  - PPO introduces tricks to (heuristically) tackle the
- Main trick is clipped loss
  - Zero contribution (the gradient) of state-ac
  - Implies a total variation 'constraint' between

$$egin{array}{l} E_{a \sim \pi_{k-1}(a \, | \, s)} \left[ \left| egin{array}{c} \pi_k(a \, | \, s) \ \pi_{k-1}(a \, | \, s) \ -1 
ight| 
ight] &\leq \epsilon \ \int_{\mathcal{A}} |\pi_k(a \, | \, s) \ -\pi_{k-1}(a \, | \, s)| \, \mathrm{d} a \leq \epsilon \ TV(\pi_k \, | \, \pi_{k-1}) \ \leq \epsilon \end{array}$$

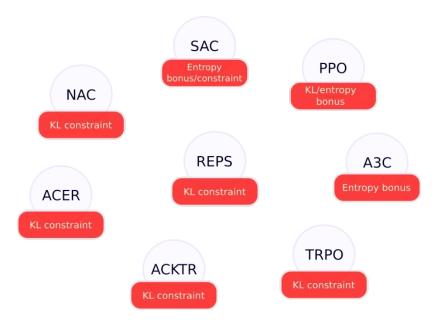
Proximal Policy Optimization Algorithms; S. Schulman, F. Wolski, P. Dhariwal, A. A.

# Gradient Clipping and Soft Constraints - PPO

- Solves the same optimization problem as TRPO (maximize advantage under KL-divergence constraint)
- Optimization routine of TRPO can be a bit slow when dealing with very large networks
  - PPO introduces tricks to (heuristically) tackle the optim. problem with vanilla gradient descent
- Main trick is clipped loss
  - Zero contribution (the gradient) of state-action pairs if  $\frac{\pi_k(a \mid s)}{\pi_{k-1}(a \mid s)}$  deviates too much from 1
  - $\circ$  Implies a total variation 'constraint' between  $\pi_{\rm k} {\rm and} \ \pi_{\rm k-1}$
  - TV and KL are related through inequality and serve similar purposes (see second part)
  - KL-divergence term sometimes added to loss too

Proximal Policy Optimization Algorithms; S. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov; 2017

### Entropy regularization in (deep) RL



#### Hard vs Soft Constraints

- Formulation with soft-constraints/bonuses is more common in the theory of (convex) optimization
- In practical algorithms it is common
  - That the KL-divergence is hard constrained
  - That entropy is added as a bonus
    - Notable exception is latter version of SAC
- Still an open question how to best formulate and solve policy update in approximate policy iteration

Optimization Issues in KL-Constrained Approximate Policy Iteration; N. Lazic, B. Hao, Y. Abbasi-Yadkori, D. Schuurmans, C. Szepesvari; 2021

#### Summary of Algorithms Overview

- KL-divergence (a.k.a. relative entropy) and entropy are widespread regularizers in RL
  - From black-box formulations typical in robotics to deep RL
- Constrained entropy regularized policy update can be solved in closed form in some cases
  - But a lot of tricks are involved to tackle the problems in deep RL
  - Finding the best formulation is still an active research area
- Soft formulation with entropy terms added to policy update loss trivial to implement
  - But does not seem to be popular in practice, especially for KL-divergence constraint
  - ...why is it important to bound the KL-divergence anyway?

# Learning Goals

- Entropy Regularization in RL
  - Algorithms and applications in robotics
  - Why is it important?
    - Monotonic improvements in Approximate Policy Iteration (API)
    - Exploration in RL

# Why does Entropy Regularization Helps?

• Typical entropy regularized policy update in Approximate Policy Iteration (API)

$$\max_{\substack{\pi_k^t \\ k}} \quad \mathbb{E}_{s \sim p_{k-1}^t, a \sim \pi_k^t(.|s)} \left[ \hat{Q}_{k-1}^t(s, a) \right]$$

$$s.t. \quad \mathbb{E}_{s \sim p_{k-1}^t} \left[ \text{KL} \left( \pi_k^t(.|s) || \pi_{k-1}^t(.|s) \right) \right] \le \epsilon$$

$$\mathbb{E}_{s \sim p_{k-1}^t} \left[ \mathcal{H}(\pi_{k-1}^t(.|s)) - \mathcal{H}(\pi_k^t(.|s)) \right] \le \beta$$

- Strict compliance with KL-divergence constraint important in practice... why?
- Objective and constraints expressed in terms of  $p_{k-1}^t$ ... is it reasonable?

#### Policy Improvement

- In tabular RL,  $\pi_k(s) = \arg \max Q_{k-1}(s, .)$ 
  - Take better action in **all states**
  - $\circ$  Immediately implies that  $Q_k \geq Q_{k-1}$ , i.e. for any (s,a)  $Q_k(s,a) \geq Q_{k-1}(s,a)$
- Relaxation when using function approximators

$$\circ \quad \pi_k = \underset{\pi}{\operatorname{arg\,max}} \quad \mathbb{E}_{s \sim p_{k-1}, a \sim \pi(\cdot|s)} \left[ Q_{k-1}(s, a) \right]$$

- Take better actions in average of **previous state** distribution
- What about average under the **current state** distribution  $\mathbb{E}_{s \sim p_k, a \sim \pi(.|s)} [Q_{k-1}(s, a)]$ ?

•  $\Pi$  matrix representation of policy  $\pi$ 

•  $\prod$  matrix of size  $|\mathcal{S}| \times |\mathcal{S}| |\mathcal{A}|$  $\Pi_{(s,(s',a))} = \pi(a|s)$  if s = s', 0 else

- $\Pi$  matrix representation of policy  $\pi$
- P transition matrix

• P matrix of size  $|\mathcal{S}||\mathcal{A}| \times |\mathcal{S}|$  $P_{((s,a),s')} = p(s'|s,a)$ 

- $\Pi$  matrix representation of policy  $\pi$
- P transition matrix
- Value function  $V^{\pi} = \Pi R + \gamma \Pi P V^{\pi}$

- R matrix of size  $|\mathcal{S}||\mathcal{A}| imes 1$ 

 $R_{((s,a),1)} = r(s,a)$ 

- $\Pi$  matrix representation of policy  $\pi$
- P transition matrix
- Value function  $V^{\pi} = \left(I \gamma \Pi P\right)^{-1} \Pi R$ 
  - Policy induced state distribution

$$(I - \gamma \Pi P)_{(s,s')}^{-1} = \sum_{t=0}^{\infty} \gamma^t (\Pi P)_{(s,s')}^t,$$
$$= \sum_{t=0}^{\infty} \gamma^t Pr(s_t = s' | s_0 = s; \pi),$$

• We define  $\Pi_s = \left(I - \gamma \Pi P\right)^{-1}$ 

- $\Pi$  matrix representation of policy  $\pi$
- P transition matrix
- Value function  $V^{\pi} = \Pi_s \Pi R$

- $\Pi$  matrix representation of policy  $\pi$
- P transition matrix
- Value function  $V^{\pi}=\Pi_s\Pi R$
- Policy return  $J(\pi) = \mu^T V^\pi\,$  for initial state distribution matrix  $\mu$

#### Performance Difference Lemma

• 
$$V^{\pi} - V^{\pi'} = \prod_{s} \prod A^{\pi'}$$

#### Performance Difference Lemma

• 
$$V^{\pi} - V^{\pi'} = \prod_s \prod A^{\pi'}$$

Entropy Regularization in RL

Value difference  

$$V^{\pi} - V^{\pi'} = \Pi \left( \mathcal{R} + \gamma P V^{\pi} \right) - V^{\pi'},$$

$$= \Pi \left( \mathcal{R} + \gamma P \left( V^{\pi} + V^{\pi'} - V^{\pi'} \right) \right) - V^{\pi'},$$

$$= \gamma \Pi P \left( V^{\pi} - V^{\pi'} \right) + \Pi \left( \mathcal{R} + \gamma P V^{\pi'} \right) - V^{\pi'},$$

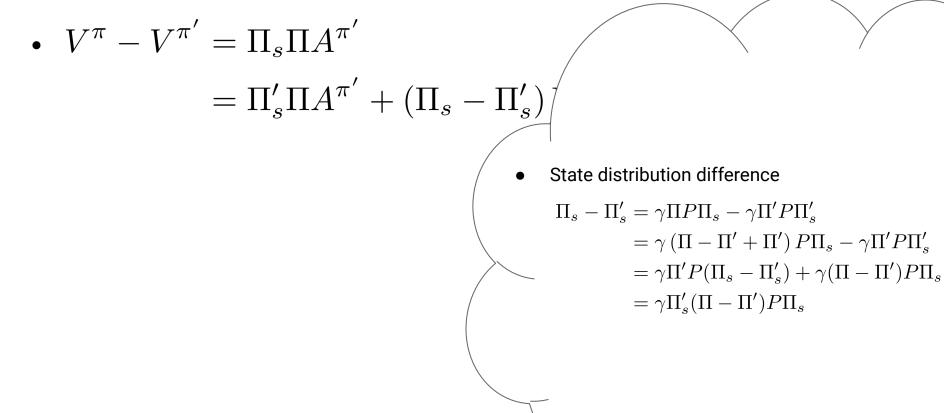
$$= \gamma \Pi P \left( V^{\pi} - V^{\pi'} \right) + \Pi Q^{\pi'} - V^{\pi'},$$

$$= \gamma \Pi P \left( V^{\pi} - V^{\pi'} \right) + \Pi A^{\pi'},$$

$$= (I - \gamma \Pi P)^{-1} \Pi A^{\pi'}.$$

36

• 
$$V^{\pi} - V^{\pi'} = \Pi_s \Pi A^{\pi'}$$
  
=  $\Pi'_s \Pi A^{\pi'} + (\Pi_s - \Pi'_s) \Pi A^{\pi'}$ 



• 
$$V^{\pi} - V^{\pi'} = \Pi_s \Pi A^{\pi'}$$
  
=  $\Pi'_s \Pi A^{\pi'} + (\Pi_s - \Pi'_s) \Pi A^{\pi'}$   
=  $\Pi'_s \Pi A^{\pi'} + \gamma \Pi'_s (\Pi - \Pi') P \Pi_s \Pi A^{\pi'}$ 

- Expressed policy return as a function of old advantage under old state distribution
  - + term small when new policy is close to old one

- Previous expression contains  $\Pi_s$  which is hard to quantify
  - $\circ$  Prior work will mainly differ in bounding  $||\mu^T \left(\Pi_s \Pi_s'
    ight)||_{\infty}$

- Previous expression contains  $\Pi_s$  which is hard to quantify
  - $\circ$  Prior work will mainly differ in bounding  $||\mu^T \left(\Pi_s \Pi_s'
    ight)||_{\infty}$
- CPI (Kakade et al. ICML02):  $||\mu^T (\Pi_s \Pi'_s)||_{\infty} \leq \frac{2\alpha\gamma}{(1-\gamma)^2}$ 
  - Where  $\Pi = \alpha \Pi^g (1 \alpha) \Pi'$  mixes previous policy with policy maximizing old advantage
  - $\circ$  Improvement of policy return can be guaranteed for small enough lpha

$$J^{\pi} - J^{\pi'} \ge \frac{\left(\mu^T \Pi'_s \Pi^g A^{\pi'}\right)^2}{8}$$

- Previous expression contains  $\Pi_s$  which is hard to quantify
  - $\circ$  Prior work will mainly differ in bounding  $||\mu^T \left(\Pi_s \Pi_s'
    ight)||_{\infty}$
- CPI (Kakade et al. ICML02):  $||\mu^T (\Pi_s \Pi'_s)||_{\infty} \leq \frac{2\alpha\gamma}{(1-\gamma)^2}$

• USPI (Pirotta et al. ICML13): 
$$||\mu^T (\Pi_s - \Pi'_s)||_{\infty} \leq \frac{\gamma}{(1-\gamma)^2} ||\Pi - \Pi'||_{\infty}$$
  
 $\circ ||\Pi - \Pi'||_{\infty} = \max_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} |\pi(a|s) - \pi'(a|s)|$   
 $= 2 \max_{s \in \mathcal{S}} \operatorname{TV}(\pi(.|s) || \pi'(.|s))$ 

- Previous expression contains  $\Pi_s$  which is hard to quantify
  - $\circ$  Prior work will mainly differ in bounding  $||\mu^T\left(\Pi_s-\Pi_s'
    ight)||_{\infty}$
- CPI (Kakade et al. ICML02):  $||\mu^T (\Pi_s \Pi'_s)||_{\infty} \leq \frac{2\alpha\gamma}{(1-\gamma)^2}$

• USPI (Pirotta et al. ICML13): 
$$\|\mu^T (\Pi_s - \Pi'_s)\|_{\infty} \leq \frac{2\gamma}{(1-\gamma)^2} \max_{s \in \mathcal{S}} \mathrm{TV}(\pi(.|s) \parallel \pi'(.|s))$$

• TRPO (Schulman et al. ICML15):  $||\mu^T (\Pi_s - \Pi'_s)||_{\infty} \leq \frac{2\gamma}{(1-\gamma)^2} \max_{s \in S} \sqrt{\frac{1}{2}} \operatorname{KL}(\pi(.|s) \parallel \pi'(.|s))$ • Pinsker's inequality:  $\operatorname{TV} \leq \sqrt{\frac{1}{2}} \operatorname{KL}$ 

- Previous expression contains  $\Pi_s$  which is hard to quantify
  - $\circ$  Prior work will mainly differ in bounding  $||\mu^T\left(\Pi_s-\Pi_s'
    ight)||_{\infty}$
- CPI (Kakade et al. ICML02):  $||\mu^T (\Pi_s \Pi'_s)||_{\infty} \leq \frac{2\alpha\gamma}{(1-\gamma)^2}$

• USPI (Pirotta et al. ICML13): 
$$\|\mu^T (\Pi_s - \Pi'_s)\|_{\infty} \leq \frac{2\gamma}{(1-\gamma)^2} \max_{s \in \mathcal{S}} \mathrm{TV}(\pi(.|s) \parallel \pi'(.|s))$$

• TRPO (Schulman et al. ICML15): 
$$||\mu^T (\Pi_s - \Pi'_s)||_{\infty} \leq \frac{2\gamma}{(1-\gamma)^2} \max_{s \in \mathcal{S}} \sqrt{\frac{1}{2}} \operatorname{KL}(\pi(.|s) \parallel \pi'(.|s))$$

• CPO (Achiam et al. ICML17): 
$$\|\mu^T (\Pi_s - \Pi'_s)\|_{\infty} \leq \frac{2\gamma}{(1-\gamma)^2} \mathbb{E}_{s \sim \pi'} [\operatorname{TV}(\pi(.|s) \parallel \pi'(.|s))]$$

#### Entropy Regularization in RL

# Pessimism of (TV) Constrained Policy Updates

- For never seen (s,a), fair to assume that it has the worst reward and leads to the worst states
  - Necessary if we want to provide guarantees that hold in the worst case
- Bounds previously discussed assume the worst when bounding  $\Pi_s \Pi A^{\pi'}$  even for pairs explored by  $\pi'$ 
  - Only saving grace is to minimize divergence to  $\pi'$
  - In that sense similar to imitation learning [1]
  - Bounds too pessimistic to be useful in practice
- Open question: how to incorporate pessimism that takes into account visited (s,a) pairs in deep RL

[1] The Importance of Pessimism in Fixed Dataset Policy Optimization; J. Buckman, C. Gelada, M. Bellemare; ICLR2021

# Optimism in RL

- For never seen (s,a), fair to assume that it has the best reward and leads to the best states
  - Necessary if we want to provide guarantees that we find the optimal policy
- For explored (s,a) pairs, high probability bounds of reward and future state distribution depend on
  - Number of times (s,a) has been visited and optionally its variance (concentration inequalities)
- Estimating these quantities is a similar open problem as in previous slide
  - Entropy bonus/constraint is the optimistic pendant of TV/KL-divergence constraint
  - Ensures that (s,a) pairs are explored sufficiently many times
  - Can be overly optimistic towards very bad pairs and is mostly used as an heuristic



- For principled RL algorithm development, learner should memorize visitation counts for (s,a) pairs
  - Doable in tabular settings or with trees (MCTS)
  - Remains an open problem for large MDPs requiring function approximators
- Entropy regularization provides useful tools to cope with lack of visitation counts and incorporates
  - Optimistic view: to ensure sufficient exploration through entropy lower bound
  - Pessimistic view: to ensure policy improvement through TV/KL-divergence upper bound
- Future research needed to correct for excessive optimism/pessimism