

ELEC-E8125 Reinforcement learning Partially observable Markov decision processes

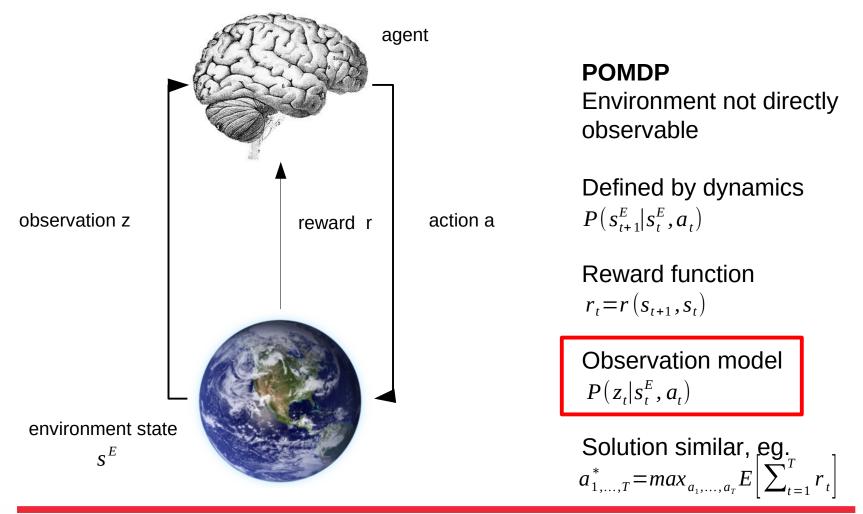
Joni Pajarinen 16.11.2021

• Partially observable Markov decision processes

Learning goals

- Understand POMDPs and related concepts.
- Be able to explain why solving POMDPs is difficult.

Partially observable MDP (POMDP)



Agent does not directly observe environment state!

Partial observability example

- Observe only adjacent walls.
- Starting state unknown, in upper row of grid.
- Assume perfect actions.
- Give a policy as function of observations!
- Any problems?

Observations:

Can you present a (time-dependent) optimal policy as a tree?

History and information state

- *History* (= Information state) is the sequence of actions and observations until time *t*.
- Information state is Markovian, i.e., $P_{I}(I_{t+1}|a_{t}, I_{t}) = P_{I}(I_{t+1}|a_{t}, I_{t}, I_{t-1}, \dots, I_{0})$
- POMDP thus corresponds to an Information state MDP.

What is the largest feline in the world?

Example: Tiger problem

r=-100

A = {open right, open left, listen}

P(HL|TL)=0.85 P(HR|TL)=0.15 P(HL|TR)=0.15 P(HR|TR)=0.85

What kind of policy would be reasonable?

Policy depends on history of observations and actions = information state.

Belief state, belief space MDP

- Belief state = distribution over states.
 - Compresses information state.

• Belief
$$b_t(s) \equiv p(s_t = s | I_t)$$

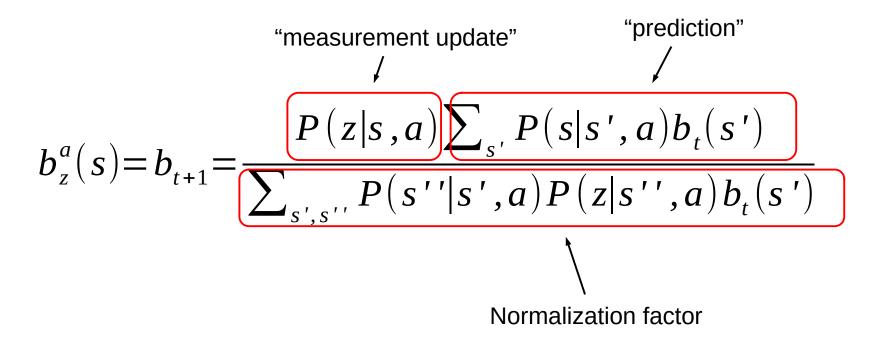
• Can be represented as a vector $\mathbf{b} = (b(s_1), b(s_2), ...)$

- POMDP corresponds to belief space MDP.
- POMDP solution can be structured as
 - State estimation (of belief state) +
 - Policy on belief state.

Belief update

Similar to state estimator, e.g. Kalman filter, particle filter:

= state estimation

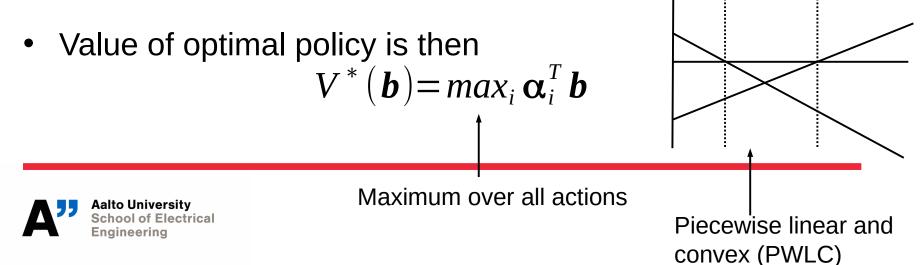


Tiger example update

Single step policies

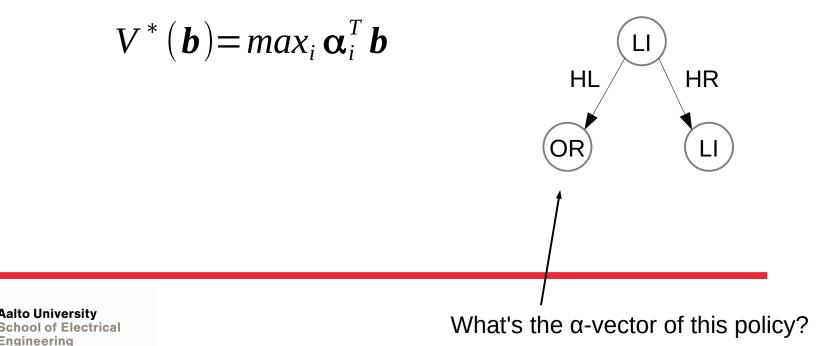
- Value of belief state for a particular single step policy $V_{\pi}(\boldsymbol{b}) = \sum_{s} b(s) V_{\pi}(s)$
- Can be represented as *alpha vector* (consisting of values for each state)

$$V_{\pi}(\boldsymbol{b}) = \boldsymbol{\alpha}^T \boldsymbol{b}$$



Conditional plans and policy trees

- Similar to single step policies, value functions of multistep policies can be represented as alpha vectors.
- Best policy for a particular belief is then again



Value iteration on belief states

• Bellman equation

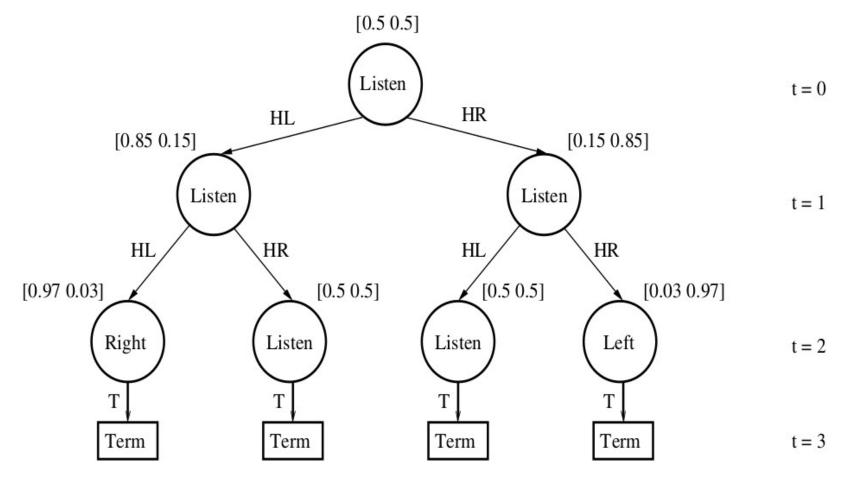
 $V_{n+1}^{*}(b) = max_{a} \Big[\sum_{s} b(s)r(s,a) + \gamma \sum_{z} \sum_{s'} P(z|s',a) \sum_{s} P(s'|s,a)b(s)V_{n}^{*}(b_{z}^{a}) \Big]$

- No trivial closed form solution (similar to MDP tabulation) because
 V(b) is a function of a continuous variable.
- At each iteration, each plan of previous iteration is combined with each possible action/observation pair to generate plans of length *n*+1.
 - At each iteration number of conditional plans increases by

$$|V_{n+1}| = |A| |V_n|^{|Z|}$$

- Some conditional plans often not optimal for any belief.
 - Corresponding alpha-vectors never dominant.
 - Alpha-vectors (/conditional plans) can be pruned at each iteration.

Starting from known belief state



Computational complexity

• For a known starting belief state and horizon *H*, the size of a full policy tree is $(|A||Z|)^H$

- Infinite horizon POMDPs thus not possible to construct in general.
- Note: Linear systems with Gaussian uncertainty optimally solvable by Kalman filter + optimal control.

Aalto University School of Electrical Engineering

Summary

- Partially observable MDPs are MDPs with observations that depend stochastically on state.
- POMDP integrates optimal information gathering to optimal decision making.
- POMDP = belief-state estimation + belief-state MDP.
- POMDPs computationally intractable in general situations.
 - Approximations are needed for larger than toy problems.

Next week: Larger POMDPs

