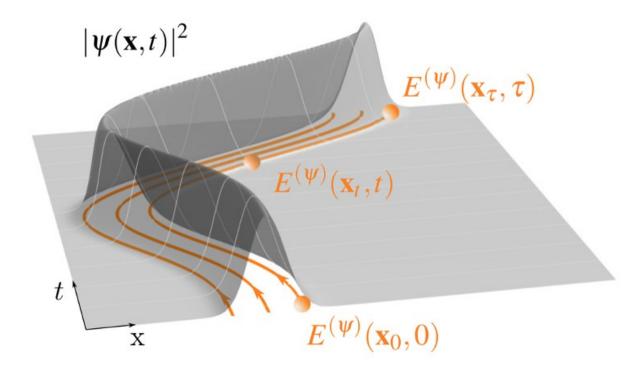
PHYS-C0252 - Quantum Mechanics Part 2 Section 7

Tapio.Ala-Nissila@aalto.fi



1

7. Time Dependence of Operators

• The formulation of quantum dynamics is not unique for the states and operators. Consider the expectation value of some (Hermitian) operator

$$\begin{split} \langle \hat{A}(t) \rangle &= \langle \psi(t) | \hat{A} | \psi(t) \rangle = \langle \hat{U}(t) \psi(0) | \hat{A} | \hat{U}(t) \psi(0) \rangle \\ &= \langle \psi(0) | \hat{U}^{\dagger}(t) \hat{A} \hat{U}(t) | \psi(0) \rangle \\ &= \left(\langle \psi(0) | \hat{U}^{\dagger}(t) \right) \hat{A} \left(\hat{U}(t) | \psi(0) \rangle \right) \\ &= \langle \psi(0) | \left(\hat{U}^{\dagger}(t) \hat{A} \hat{U}(t) \right) | \psi(0) \rangle \end{split}$$

where the time-evolution operator from the Schrödinger equation propagates the wave function

$$\Psi_n(x,t) = \hat{U}(t)\psi_n(x,t)$$

and follows the equation of motion

$$i\hbar \frac{\partial \hat{U}(t,t_0)}{\partial t} = \hat{H}(t)\hat{U}(t,t_0)$$

giving

$$\hat{U}(t,t_0) = e^{-i \int_{t_0}^t dt' \hat{H}(t')/\hbar}$$

The form where the states evolve in time is the *Schrödinger picture*

$$\langle \hat{A}(t) \rangle = \left(\langle \psi(0) | \hat{U}^{\dagger}(t) \right) \hat{A} \left(\hat{U}(t) | \psi(0) \rangle \right)$$

and where the operator(s) evolve in time but states stay the same is the *Heisenberg picture*:

$$\langle \hat{A}(t) \rangle = \langle \psi(0) | \left(\hat{U}^{\dagger}(t) \hat{A} \hat{U}(t) \right) | \psi(0) \rangle$$

7.1 Schrödinger Picture

• The time evolution of the state is governed by

$$i\hbar\frac{\partial}{\partial t}|\psi(t)\rangle_{S} = \hat{H}|\psi(t)\rangle_{S}$$

- or equivalently $|\psi(t)\rangle_S = \hat{U}(t,t_0)|\psi(t_0)\rangle_S$
- For operators (expectation values)

$$\begin{split} \imath\hbar \frac{\partial}{\partial t} \langle \psi(t) | \hat{A} | \psi(t) \rangle_{S} \\ &= \imath\hbar \left(\langle \psi(t) | \hat{A} | \dot{\psi}(t) \rangle_{S} + \langle \dot{\psi}(t) | \hat{A} | \psi(t) \rangle_{S} \right) \end{split}$$

$$= \langle \psi(t) | \hat{A}\hat{H} | \psi(t) \rangle_{S} - \langle \psi(t) | \hat{H}\hat{A} | \psi(t) \rangle_{S} = \langle [\hat{A}, \hat{H}] \rangle_{S}$$

If the commutator is zero, the expectation value of *A* is *a constant of motion*

7.2 Heisenberg Picture

 In the HP the states do not evolve in time but the operators (expectation values) do, and we can write

$$\hat{A}_H(t) = \hat{U}^{\dagger}(t, t_0) \hat{A}_S \hat{U}(t, t_0)$$

which agree at time t_o

The wave functions are related by

$$|\psi_S(t)\rangle = \hat{U}(t,t_0)|\psi_H\rangle$$

The operators depend on time now and their equation of motion is given by

$$\begin{aligned} \frac{\partial \hat{A}_H}{\partial t} &= \frac{\partial (\hat{U}^{\dagger} \hat{A}_S \hat{U})}{\partial t} \\ &= \frac{\imath}{\hbar} \left(\hat{U}^{\dagger} \hat{H} \hat{A}_S \hat{U} - \hat{U}^{\dagger} \hat{A}_S \hat{H} \hat{U} \right) \\ &= \frac{\imath}{\hbar} \left(\hat{H}_H \hat{A}_H - \hat{A}_H \hat{H}_H \right) \\ &= -\frac{\imath}{\hbar} [\hat{A}, \hat{H}]_H \end{aligned}$$

Note that for time-independent Hamiltonian

$$\hat{H}_H = \hat{U}^\dagger \hat{H} \hat{U} = \hat{H}$$

There is also an *interaction (Dirac) picture*, which is used when the system Hamiltonian can be divided into two parts as (in Schrödinger picture)

$$\hat{H}_S = \hat{H}_S^0 + \hat{H}_S^I$$

where the first part is "easy" (usually solvable). Then a state vector in the IP is given by

$$|\psi_I(t)\rangle = e^{i\hat{H}_S^0 t/\hbar} |\psi_S(t)\rangle$$

An operator in the IP is defined by

$$\hat{A}_I(t) = e^{i\hat{H}_S^0 t/\hbar} \hat{A}_S e^{-i\hat{H}_S^0 t/\hbar}$$

Recently a *correlation picture* (transformation) has been introduced for open quantum systems

PHYSICAL REVIEW X 10, 041024 (2020)

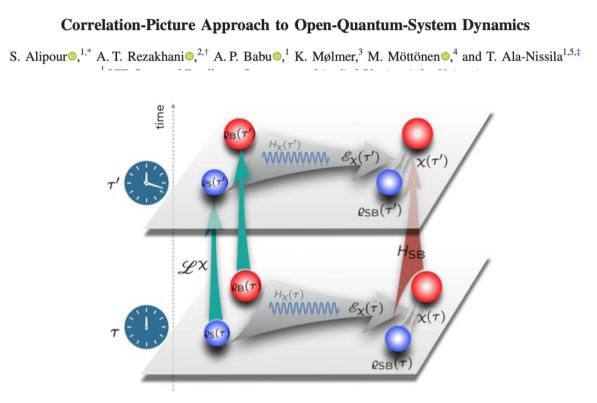


FIG. 1. Description of the correlation picture. At any time τ (or τ'), a correlating transformation \mathscr{C}_{χ} transforms an uncorrelated state $\varrho_{\rm S} \otimes \varrho_{\rm B}$ to a correlated state $\varrho_{\rm SB} = \varrho_{\rm S} \otimes \varrho_{\rm B} + \chi$, at the same instant of time, due to an abstract correlation-dependent parent operator given by H_{χ} . Using this transformation, we obtain the temporal evolution of the uncorrelated system with a universal Lindblad-like generator \mathscr{D}_{χ} [see Eq. (9)] constructed from $H_{\rm SB}$, the generator of the total system dynamics in the Schrödinger picture.