1 Course Information

Status of the Course: Building Technology Major studies; Construction and Maintenance

Level of the Course: Aalto Eng, Master's degree course

Teachers: Prof. Jouni Punkki, and Staff Scientist (D.Sc.), Fahim Al-Neshawy.

Course assistant: M.Sc. Teemu Ojala. Teaching Period: Spring 2022 (Period III)

Course Homepage: https://mycourses.aalto.fi/course/view.php?id=32271

Registration for Courses: Registration to course using Sisu - https://sisu.aalto.fi

Language of Instruction: English

2 Learning Outcomes

Upon successful completion of the course, students will be able to:

Knowledge:

• Gain knowledge about the properties of cement, concrete and special concretes.

Skills:

- Perform the process of selecting suitable ingredients of concrete and determining their relative amounts with the objective of producing a concrete of the required, strength, durability, and workability as economically as possible
- Identify properties of concrete in the fresh and hardened states and the effects of mineral and chemical admixtures in concrete
- Theoretically predict the thermal and strength development of concrete structures

General competence:

- Clearly understand the relevant concrete technology
- Identify the chemical or physical process of concrete structures durability concerns, and design their service life.

3 Course Content

The course covers the following topics:

- (a) Concrete materials
 - Proportioning of concrete mixtures
 - Cement hydration process and microstructure of the hydrated cement paste
 - Chemical admixtures and Supplementary Cementing Materials (SCMs)
 - Interfacial Transition Zone in Concrete (ITZ)
- (b) Properties of fresh and hardened concrete
- (c) Durability and service life of concrete structures
 - Durability of concrete
 - Service life design of concrete structures
 - Sustainability of concrete

4 Teaching Methods

The course includes the following teaching methods and activities:

- Lectures
- Weekly exercises Individual work
- Laboratory work Group work and presentations of the laboratory work
- Final written exam

4.1 Lectures schedule (subject to change)

The schedule listed on this page is tentative and may change during the term. We recommend that you use the notes for each lecture and you can add additional notes during class. Recommended readings are listed at - Recommended readings - tab in MyCourses.

Table 1: Course lectures

\mathbf{Day}	Date	Lecture	Topic
Mon	10.1.2022	Lecture 1	Introduction to concrete
Tue	11.1.2022	Lecture 2	Cement and hydration
Mon	17.1.2022	Lecture 3	Microstructure of concrete
Tue	18.1.2022	Lecture 4	Chemical admixtures for concrete
Mon	24.1.2022	Lecture 5	Mineral admixtures (Supplementary Cementing Materials)
Tue	25.1.2022	Lecture 6	Properties of fresh concrete
Mon	31.1.2022	Lecture 7	Properties of hardened concrete
Tue	1.2.2022	Lecture 8	Durability - Concrete degradation mechanisms
Mon	7.2.2022	Lecture 9	Durability - Service life design
Tue	8.2.2022	Lecture 10	Sustainability of concrete
Mon	14.2.2022	Seminar - I	Groupwork presentations
Tue	15.2.2022	Seminar - II	Groupwork presentations and Laboratory work results
Thu	17.2.2022	Course review	Course review and general discussion
Mon	21.2.2022	Exam	Final Exam (13:00 - 16:00)

4.2 Weekly exercises - Individual work

The course has four weekly exercises. Students submit their solution (**individually**) into MyCourses system for evaluation within the deadline of each exercise.

The weekly exercises are weighted as 20 % of the final grade.

Table 2: Weekly Exercises

Exercise session	Exercise	Topic	Deadline
Thu 13.01.2022	01	Mix-Design methods and cement chemistry	Thu 20.01.2022 @ 12:00
Thu 20.01.2022	02	Microstructure of concrete and admixtures	Tue 01.02.2022 @ 12:00
Tue 01.02.2022	03	Heat and strength development	Tue 08.02.2022 @ 12:00
Tue $08.02.2022$	04	Carbon footprint and Service life design of concrete	Tue 15.02.2022 @ 12:00

4.3 Laboratory work

The main objective of the laboratory work is to design and optimize a concrete mix and predict the heat of hydration and strength development for a given concrete structure. The <u>hands-on</u> laboratory work includes mix design, casting, testing of the fresh and hardened concrete and reporting the results. The laboratory work is weighted as 10% of the final grade.

4.4 Final written exam

The written exam includes 5 questions covering the course outcomes. The questions include (short) essay questions and computational question.

The final exam is weighted as 70% of the final grade.

5 Course Workload

Students are assigned work to be completed the course. Students have 2 lectures each week, weekly exercises, laboratory work and presentations and several hours of reading to prepare for the final exam.

Table 3: Estimated course workload Time Workload fac-Student activities # tor (h) (h) Attending lectures and readings handouts 40 10 4 2 Attending seminars and presenting the laboratory 4 8 Attending weekly exercise sessions and excerise work 4 5 20 Group work Laboratory (Mix design, casting and testing) 3 5 15 Independent reading (articles, book chapters, lecture 1 50 50 notes etc. i.e., preparing for the exam) Final examination 1 3 3 Total workload (Hours) 136 ECTS Credit of the course (workload / 27) 5

Department of Civil Engineering

6 Assessment Methods and Grading Scale

The grading scale for course is: 5 (highest); 4; 3; 2; 1 (lowest passing grade); 0 (failed). The course outcome assessment includes:

- a) Weekly exercises 20% of the final grade (20 points)
- b) Laboratory work 10% of the final grade (10 points)
- c) Final exam 70% of the final grade (70 points)

Table 4: Course grading

Total points	Grade
< 50	0
50 < 60	1
60 < 70	2
70 < 80	3
80 < 90	4
90 100	5

7 Study Materials

Recommended Book:

P. Kumar Mehta, Paulo J. M. Monteiro (2006). Concrete: microstructure, properties, and materials. New York, NY: McGraw-Hill; London, cop. 2006.

(Quick search at: https://www.aalto.fi/en/learning-centre)

Chapter 02 - Microstructure of concrete

Chapter 06 - Hydraulic cement

Chapter 07 - Aggregates

Chapter 08 - Admixtures

Chapter 09 - Proportioning concrete mixtures

Chapter 10 - Concrete at Early Age

Chapter 12 - Progress in concrete technology (special types of concrete)

Chapter 05 - Durability

Optional book in Finnish:

BY 201 Betonitekniikan oppikirja 2018. Julkaisijat: Suomen Betoniyhdistys r.y. Kustantaja: BY-koulutus Oy. Julkaistu: 2018.

Course handouts:

include explanatory notes and exercise problems.

8 Prerequisites

• CIV-E1010 Building Materials Technology 5 op