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TheWorld Health Organization has declared the glycated hemoglobin (HbA1c) as a gold standard biomarker for
diabetes diagnosis; this has led to relevant research on the spectral behavior and characterization of HbA1c. This
paper presents an analysis of Ramanpeaks of commercial lyophilizedHbA1c, diluted in distilledwater, using con-
centrations of 4.76% and 9.09%, as well as pure powder (100% concentration). Vibrational Raman peak positions
of HbA1c powder were found at 1578, 1571, 1536, 1436, 1311, 1308, 1230, 1222, 1114, 1106, 969, 799 and 665
cm−1; these values are consistent with results reported in other works. Besides, a nonlinear regression model
based on a Feed-Forward Neural Network (FFNN) was built to quantify percentages of HbA1c for unknown con-
centrations. Using the Raman spectra as independent variables, the regression provided a Root Mean Square
Error in Cross-Validation (RMSECV) of 0.08%± 0.04. We also include a detailed molecular assignment of the av-
erage spectra of lyophilized powder of HbA1c.
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1. Introduction

The American Diabetes Association and other related organizations
world- wide have recommended the measure of glycated hemoglobin
(HbA1c) to aid in diabetes diagnosis. This test consists of analyzing pa-
tients' blood samples; therefore, it is an invasive technique. The percent-
age of HbA1c shows a cumulative glycemic history of the patient over
the last two to three months [1–4]. HbA1c is formed by nonenzymatic
glycosylation of hemoglobin exposed to blood glucose. During this reac-
tion, the glucose condensed with the N-amino group of a β chain of he-
moglobin, specifically the amino acid valine, forms a weakly stable
ketoamine called Schiff's base. Subsequently, the ketoamine bond, also
known as Pre-A1c, results in a modification called the Amadori rear-
rangement, producing a stable ketoamine bond, which results in
HbA1c [5]. Fig. 1 shows the formation scheme and formula of HbA1c.

HbA1c detection is of great importance; consequently, several
methods have been proposed for its analysis and measurement, such
as immunoassay [7–9], high-pressure liquid chromatography [10,11],
spectrophotometry [12–14], ion-exchange and affinity chromatography
[15–18], among others. Most of suchmethods used for HbA1c detection
are based on the chemical rupture of hemoglobin fractions, both not
glycated and glycated hemoglobin [19].

In the last years, several optical approaches have been reported for
characterization, identification, and quantification of HbA1c [20,21].
s).
For instance, the work published in [22] used different concentrations
of lyophilized human red blood cells and applied a linear regression
supported by the area under the curve of spectra, for the estimation of
HbA1c percentages. Calculations of the refractive index in different con-
centrations of Hb-glucose using Optical Coherence Tomography (OCT)
were reported in [23], likewise using Abbe refractometry [14]. In [24]
the authors discriminated Hb of HbA1c using the refractive index and
diffraction tomography. Thework [19] presents a comparison of the op-
tical properties of HbA1c and Hb using refractometry, fluorescence, and
surface enhancement Raman scattering (SERS) spectroscopy. A review
in [25] presents several spectroscopic studies of the glycation of tissues
and cell proteins, both in organisms showing developed diabetes natu-
rally as well as in-vitro glycated samples, using a wide range of electro-
magnetic waves including optical refractometry, digital holographic
microscopy, diffraction tomography, fluorescence, terahertz spectros-
copy, and optical imaging.

Furthermore, the work [26] presents a model for discrimination be-
tween diabetic and non-diabetic patients, using red blood cells and
Near-Infrared Raman Spectroscopy (NIRS). Authors in [19] used SERS
spectroscopy to analyze the spectral behavior of lyophilized powder of
human hemoglobin (Hb) and hemolysate of glycated hemoglobin
(HbA1c). A procedure for the discrimination of Hb and HbA1c on both
blood and commercial samplings was reported in [27], using drop-
coating Raman spectroscopy (DCRS); the partial least-squares (PLS)
method was applied for the calculation of the HbA1c percentage. The
authors of [28] were able to characterize the spectral behavior of Hb
and HbA1c using surface enhanced resonance Raman scattering
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Fig. 1. The HbA1c formation scheme and chemical formula [6].
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(SERRS) spectroscopy. The work [29] shows the feasibility of discrimi-
nating Type-II diabetic patients from non-diabetic patients, using a
combination of laser tweezers andRaman spectroscopy; the authors an-
alyzed differences in the peaks of spectra obtained from red cells of both
types of patients. In [30], Hb andHbA1c Raman signals were analyzed in
hemolysate of erythrocytes and inwhole blood, using resonance Raman
spectroscopy; the classification of HbA1c concentrations in three groups
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was done using a Support Vector Machine (SVM); that work includes
molecular assignments of peaks.

Concerning in vivo measurement, the work [31] discriminates
among diabetic and non-diabetic patients using Raman spectroscopy
and SVM. The use of Terahertz spectroscopy in human skin for glucose
detection was reported in [32]. The work [33] evaluated relations of ad-
vanced glycation end products in the skin using skin intrinsic
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Table 1
Representative peaks and FWHM obtained from average HbA1c Raman spectra for three concentrations.

Concentration Raman peaks - FWHM (cm−1)

100% 1578 - 42 1571 - 49 1536 - 29 1436 - 58 1311 - 53 1308 - 59 1230 - 37 1221 - 58 1114 - 15 1106 - 30 969 - 28 749 - 28 665 - 28

9.09% 1579 - 58 1572 - 58 1542 - 12 1450 - 92 1310 - 4 1307 - 47 1238 - 35 1214 - 5 1119 - 12 1111 - 9
979 –
6

747 –
5

661 - 41

4.76% 1579 - 55 1575 - 55 1539 - 39 1432 – 10 1315 - 49 1301 - 59 1237 - 35 1223 - 58 1113 – 5 1102 - 58 974 - 28 749 - 12 660 - 34
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fluorescence (SIF) andmultivariable regression. The authors of [34] filed
a patent of an apparatus that uses FT Infrared Raman and absorbance
spectrometers for the detection of glucose and HbA1c. They created a
data processor to determine the percentage of glycated hemoglobin
through the comparison of the extinction coefficient in a reference ma-
terial. Nevertheless, no information is provided about the method for
computing such approximations and no error estimation of the mea-
surements was obtained for such apparatus.

It may be noticed that through the years, several investigations have
been performed in order to achieve reliable quantification regarding the
HbA1c characterization and detection. Yet, a combination of FFNNwith
Raman spectroscopy for the measurement of glycated hemoglobin per-
centages in different concentrations has not been reported. In this work,
we present a spectral analysis of HbA1c commercial lyophilized sample
taken in three different water-based concentrations: 100% (dry pow-
der), 9.09%, and 4.76%. Using these data, we designed a quantitative re-
gression model based on artificial neural networks (ANN) to estimate
unknown HbA1c concentrations. Our work includes the removal of sig-
nal fluorescence through a smoothing process using a 3-point Savitzky-
Golay first-order algorithm, as well as filtering and normalization of the
spectra. Our experimental results showed that this methodology is a re-
liable estimator of both quantitative and qualitative characteristics of
HbA1c at different concentrations. This analysis is a first step in the de-
sign of a non-invasive device able to estimate HbA1c concentrations in
diabetic patients.

2. Experimental materials and methods

2.1. Raman spectroscopy for measurement

The characterization and analysis presented here used Raman spec-
troscopy measurements with an Ocean Optics Raman spectrometer
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QE65000, which has a resolution of 0.14–7.7 nm of Full Width at Half
Maximum (FWHM) equivalent to 6 cm−1. The experimental setup is
composed of a laser source of 785 nm with a power of 10 mW, and an
InPhotonics Raman probe, model RIP-RPS-785, with filtering and
steering micro-optics, a numerical aperture of 0.22, and a stainless-
steel cabled fiber. It is worthmentioning that the 10mWpowerwas ob-
tained by coupling loss, i.e., by changing the separation between two
facing fibers, making it possible to modulate the received power [35].
Measurements were taken during 10 min applying photobleaching, in
order to reduce sample autofluorescence intensity [36–38]. It is impor-
tant to point out that only some specific constituents of the whole
HbA1c macromolecule are affected by photobleaching [39,40]. HbA1c
is composed of amino acids, glucose, and other molecules [41]. A few
of these amino acids such as phenylalanine, tyrosine, and tryptophan
are dominant intrinsic fluorophores, therefore they are photobleaching
[40,42]. On the other hand, glucose, which is not a fluorescentmolecule,
presents no photobleaching [39], hence the glucose intensity is not
disturbed.

The HbA1c powder provided by Sigma Aldrich (ID product:
IRMMIFCC466) was used to prepare the solutions. Pure powder was
considered as 100% concentration; besides, two solutions were made
using 10 μl and 20 μl of distilled water in which 1 mg of HbA1c was dis-
solved, corresponding to HbA1c concentrations of 9.09% and 4.76% re-
spectively; these samples are similar to human concentrations [43];
ten measurements were made for each concentration. Solutions were
prepared using Eq. (1) [44]; solute mass (msolute) was set to 1 mg and
water density (ρwater) was set to 1 g/cm3; water volume (vwater) was
varied (10 or 20 μl).

%Concentration ¼ msolute

msolute þ ρwater � vwaterð Þ � 100 ð1Þ
100 1200 1300 1400 1500

shift cm-1

lycated Hemoglobin (100%)

11
06

cm
-1

11
14

 c
m

-1

12
22

 c
m

-1

12
30

 c
m

-1

13
08

 c
m

-1

13
11

cm
-1

14
36

 c
m

-1

15
36

 c
m

-1

15
71

 c
m

-1

 1
57

8 
cm

-1

Raman Peaks at 100% concentration.



Table 2
Molecular assignment of powder HbA1c peaks, based on other works.

Peaks
positions
(cm−1)
obtained in
our
experiments

Peaks positions
(cm−1) found in
other works

Molecular assignment

1578
1585 [67], 1582
[62,68], 1580 [64]

ν37 ν(CαCm)sym [62,64,67], Phenylalanine
[64], ν37 ν(CαCm)asym [68].

1571
1568 [63,67] ν(CαCm)asym [63,67]

1536

1548 [67], 1539–1546
[65,66],
1544 [68]

Amide II (β-turn) in and out of phase
combinations of C\\N stretching and NH
in-plane bending [65,66], ν(Cβ Cβ) [67],
ν11 ν(Cβ Cβ) [68].

1436
1427 [67],1430 [68] ν28 ν(CαCm)sym [67], ν28 ν(CαCm)sym [68].

1311
1310 [69] twist [69].

1308
1303 [67], 1306 [68] δasym(CmH) [67], ν21 δasym(CmH) [68].

1230
1228 [64], 1231 [63],
1230 [68]

δ(CmH) [64], ν13 [63], metRBC δ(CmH)
[68].

1222

1226 [67], 1222 [62],
1223–1225 [66], 1225
[68]

δ(CmH) [62,67,68], Oxygenated state of
hemoglobin, PO2 asymmetric stretching
vibrations, nucleic acids [66]

1114
1120 [67], 1122–1128
[66]

ν22, δ(CH2), twisting, wagging [67], C\\N
stretching in proteins, glucose, C-methyl
in hemo [66].

1106
1106 [65]

Glucose C-O-C (bending model
deformation) [65].

969
974 [62], 970[64], 976
[66,65], 975 [68]

γ(CaH ==) [62], p:skeletal vibration,
glutathione [64],CH3 deformation [66],
C\\O angel-bending glucose [65], ν46

δ(pyr deform)asym [68].

749
755 [67], 754 [62], 753
[64,68], 754 [66]

ν(pyr deform) [62], Stretching pyr.
Breathing in oxyhemoglobin [64,66],
ν(pyr breathing) ν15 [68].

665
677 [67], 676 [64], 673
[62], 672 [66], 664 [68]

ν7 δ(pyrdeformation)sym [62,64,67,68],
Deoxygenated state of hemoglobin [66].

Fig. 4.HbA1c concentrations representation by three PC. Each point represents a sampling
spectrum.
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The SNR in Raman spectra is calculated using Eq. (2), which de-
scribes the ratio of themean of themost intense peakSand the standard
deviation at such frequency σy. For all the concentrations, the calcula-
tion was made using the peak at 1230 cm−1 and ten measurements
per concentration.

SNR ¼ S
σy

ð2Þ

It is worth mentioning that we measured HbA1c samples at 100%
(powder) applying 30 s, 40 s, and 60 s exposure time; the best SNR
was 6.53, obtained using 60 s. For the same time, we obtained an SNR
of 4.76 for 4.76% and 6.39 for 9.09%. Despite this being a low signal-to-
noise ratio, it is enough to perform quantitative analysis as long as
SNR ≥ 3 [45].

2.2. Fluorescence background removal

The Raman effect generates aweak intensity signal as only oneout of
10,000 photons presents a shift in its frequency [46]. These signals con-
tain several types of noise, such as shot noise, noise generated by instru-
mentation, noise generated by external sources (such as cosmic rays),
and noise generated by sampling [47–49]. Fluorescence background,
whichmanifests itself as a smooth curve of the baseline of the spectrum,
is also considered as noise by several authors [48–51]. Indeed, fluores-
cence removal facilitates distinguishing the positions of the peaks and
their widths [52]. There are several methods to eliminate fluorescence
in Raman spectra and smoothing them [48,50,53,54]. For the
4

experiments reported here, each Raman spectrum was pre-processed
using a fifth-degree polynomial approximation function, followed by a
smoothing using a 3-point Savitzky-Golay 1st order algorithm. The
polynomial curve fitting builds a function using a set of data points, cal-
culating the coefficients of a polynomial of a degree n − 1 [53]. The
Savitzky-Golay method generates a smoothed data function that pre-
serves the original data distribution [55].

2.3. Principal component analysis

Principal Component Analysis (PCA) is a technique that transforms
the original set of variables into another set of new uncorrelated vari-
ables, known as the principal components (PC). The PC that provide
most information on the data may be selected as inputs for building
an estimation model of the concentration of HbA1c in a sample [56].

2.4. Regression based on artificial neural networks (ANN)

Regression-based in ANN is used in this research to approximate a
relation between a dependent variable (the HbA1c value) and one
or more independent variables (PC values of the Raman spectra). ANN
are mathematical models that may be used for estimating the
outputs of a multivariable function for a given set of inputs or
regressors. There are several kinds of ANN, being feed-forward neural
networks (FFNN), one of the most popular architectures for function
approximation.

The architecture of an FFNN is based on elements called neurons, or-
ganized by layers, where neurons of one layer connect to the next one.
Each neuron has associated with a scalar value known as a weight,
which allows interactionwith other neurons. The output of each neuron
is calculated as the weighted addition of outputs coming from neurons
in the previous layer, smoothed by a function called activation function.
The value of the weights is calculated using a training algorithm,
through examples of the inputs and desired outputs of the function to
be estimated [57].

In this paper, an application provided byMATLAB 2019a, called Neu-
ral Net Fitting, was used for carrying out the concentration prediction
using a regression. The ANN architecture is an FFNN composed of two
layers, using a sigmoid activation function for neurons in the hidden
layer and a pure linear function for neurons in the output layer. The
Levenberg-Marquardt and Scaled Conjugate Gradient algorithms were
used for training; the number of neurons in the hidden layerwas chosen
as a function of the network performance, measured by the Root Mean
Square Error in Cross-Validation (RMSECV).



Table 3
Best FFNN architectures and their performance as regression models using PC obtained
from two different bands of Raman spectra.

Spectral Range Model 1 (600–1600 cm−1) Model 2 (1150–1300 cm−1)

Filtering
Process

Polyfit and Savitzky Golay Polyfit and Savitzky Golay

# hidden
neurons

5 6

Training
Algorithm

Levenberg-Marquardt
backpropagation

Levenberg-Marquardt
backpropagation

Activation
Function

Hyperbolic tangent sigmoid
and linear

Hyperbolic tangent sigmoid
and linear

RMSECV 0.54% ± 0.17 0.08% ± 0.04
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3. Results and discussion

3.1. Raman spectrum analysis

Representative peaks were obtained using MATLAB's function find-
peaks, which returns the local maxima (peaks) of an input signal [58].
Fig. 2 (a) shows the average of ten raw samples of HbA1c Raman spec-
tra, with concentrations of 100%, 4.76%, and 9.09%; Fig. 2 (b) shows the
average of such samples after being filtered and normalized. Note that
some peaks appear in the same position for the three concentrations,
while others present a shift; this is also observed in Table 1 which lists
all representative peaks for the three concentrations. For example, the
highest peak in Fig. 2 (b), located at 1230 cm−1, shifts a few cm−1

among concentrations; this behavior has been reported with other sub-
stances while diluted in water [59–61].

HbA1c is composed of sub-units of globin, α1, α2, β1 and β2; each
sub-unit is stuck together by a heme group; there is glucose attached
across its surface [6]. Fig. 3 shows the Raman peaks in a signal resulting
from the average of ten Raman spectra, obtained from HbA1c powder
(100% concentration).

Considering the heme group, Raman spectra of the HbA1c powder
show vibrations of δasym(CmH) at 1230 cm−1; other vibrations are
found at 1308 cm−1 due to methine C\\H deformation and ν(CαCm)
asym; the peak at 1571 cm−1 shows a vibration of ν(CαCm)asym; glucose
attached to hemoglobinmay produce the Raman shift at 1106 cm−1 due
to δ(C − O − C) stretching bond, the peak at 1536 cm−1 may be
assigned to Amide II by the stretching CN and CNH bending in trypto-
phan, of the deoxygenated state of hemoglobin [62–67]. Other peaks
are present in the Raman spectra; Table 2 shows a complete list of
them, compared to peak positions reported in other works.

The Raman shift observed in different concentrations (see Table 1)
may also be originated from the spectrometer error, which corresponds
to an FWHM≈ 6 cm−1; a variation of ±2 cm−1 may be caused by the
smoothing of spectra, while other sources of error may be originated
from humidity, temperature changes and the water, approximately ±
2 cm−1, according to our previous experiments.
3.2. Concentration analysis

Raman spectra contain the chemical information of the sample, rep-
resented by the intensity in different Raman shifts or bands. Among
these, some characteristics have the same origin of variation, which re-
sults in strong correlations among a few variables in the Raman shift,
which gives room for a dimensional reduction. As we stated before,
we used PCA for obtaining 3 PC that represent the primary information
contained in the spectrum. Fig. 4 plots the feature space of such repre-
sentations for all samples involved in these experiments.

Besides, we design FFNN-based regression models to be used when
the concentrations of a sample are unknown. Such models were
5

calibrated using known values of the three concentrations; after that,
they were assessed using a 5-fold cross-validation strategy.

Two regression models were built: the first one uses as input the PC
obtained from the portion of the spectra going from 600 to 1600 cm−1

[70]. The second model uses spectra located in a band running from
1150 to 1300 cm−1; this interval was chosen because it is the region
where themost intense peaks of HbA1c had been found experimentally.
Our experiments have shown that the highest intensity is located at
around 1230 cm−1 with a spectral width of 37 cm−1. Both models
were designed for best performance, adjusting the number of hidden
nodes and the training algorithms for the FFNN, using a training set of
samples. Validation tests looking for such suitable hyper-parameters
run from 5 to 20 hidden nodes, using Levenberg-Marquardt and Scaled
Conjugate Gradient algorithms. A hyperbolic tangent sigmoid was used
as an activation function in the hidden layer, while a linear functionwas
used in the output layer. After finding the best combination using train-
ing data, the models were assessed using a testing set; the parameters
and performance results are shown in Table 3. The best RMSECV =
0.08% ± 0.04 was obtained by the regression calibrated using data
from the band containing the highest peaks, that is within 1150–1300
cm−1.

4. Conclusions

In this work, we analyzed the Raman spectra generated by three dif-
ferent concentrations of HbA1c diluted in water. The fluorescence and
noise of spectra were eliminated, and the peaks were computed using
theMATLAB function find-peaks. The detected peaks show the presence
of C − O − C, C − H, CmH, and CαCm bonds, corresponding to Amide II
characteristics of hemoglobin (heme group, α, and β chains) and glu-
cose. Two nonlinear regression models were constructed using an
FFNN based fitting procedure used when the HbA1c concentration is
unknown; it is important to highlight that this adaptive regression
method has not been evaluated before for commercial HbA1c sub-
stances. The model based on the band within 1150–1300 cm−1, which
contains the most intense peak found in the experiments (at 1230
cm−1), obtained the best RMSECV of 0.08% using testing data. These re-
sults suggest the capability of Raman spectroscopy for analyzing HbA1c
in different concentrations. The next step is tomeasuremore concentra-
tions andmixtures of Hb and HbA1c as a blood phantom. After that, we
aim to design a procedure for approximating the amount of HbA1c in
human blood by using neural regression, several feature extraction
and selection methods, through processing and analyzing such
measurements.
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