Problem Set 1

1. What are the Nash Equilibria of these games?

	L	R
(a)		4,4
		0,2
	D	1,0

(b) | | L | M | R |
| :---: | :---: | :---: | :---: |
| | 2,2 | 0,1 | $5,-1$ |
| | 2,2 | 4,4 | 7,1 |
| | 0,3 | 4,4 | |
| | 1,1 | 1,1 | 1,8 |
| | | | |

(c) There are three players playing the following simultaneous move game. Player 1 and 2 choose the row action and column action respectively, player 3 chooses whether payoffs are determined by the left or right payoff matrix.

	L	R	L		R
U	2, 2, 2	-1,3,3	U	-1, -1, 3	-1,3,3
D	$3,-1,-1$	3, 3, -1	D	3, -1, 3	0, 0,0

2. There are two consumers, one private good, x_{i}, and one public good, y. Consumers have utility $u_{i}\left(x_{i}, y\right)=\ln x_{i}+\ln y$. Each consumer is intially endowed with one unit of the private good, and no units of the public good. Consumers have access to a technology that converts any amount of the private good into the same amount of public good.
Each consumer simultaneously chooses an amount $y_{i} \in[0,1]$ of public good to produce and then consume the private and public good (so consumers i 's payoffs is $\ln \left(1-y_{i}\right)+$ $\left.\ln \left(y_{1}+y_{2}\right)\right)$.
(a) What is the set of Pareto efficient allocations?
(b) What are the Nash Equilibria of this game?
3. There are two players who choose a real number in the unit interval, i.e. strategy spaces are $S_{i}=[0,1], i=1,2$. A player wants to choose a number as close as possible to the other player's choice, so that payoffs are given by

$$
u_{i}\left(s_{i}, s_{j}\right)=-\left|s_{i}-s_{j}\right|, i, j=1,2, i \neq j .
$$

(a) Which strategies are rationalizable?
(b) Does the game have any mixed strategy equilibria?
(c) How does your answer change if the payoff function is modified to

$$
u_{i}\left(s_{i}, s_{j}\right)=-\left(s_{i}-s_{j}\right)^{2}, i, j=1,2, i \neq j
$$

