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Lecture 5  Introduction to ship motions 

1. Introduction 

Ship seakeeping is a term that reflects the ability of a vessel to withstand rough conditions at sea. It 

therefore involves the study of the motions of a ship when subjected to waves, and the resulting 

effects on humans, systems and mission capability (Lloyd, 1989). With fast computers and 

sophisticated software readily available to designers, it is now possible for a vessel's seakeeping 

characteristics to be addressed much earlier in the design spiral. As shown in Figure 5-1 there are 

three main components that influence ship seakeeping responses namely, (a) the waves as input to 

the system, (b) ship system characteristics and (c) ship motions.  

(a) Input
Waves and Winds

(b) System
RAOs

(c) Output
Motions and structural loads
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Figure 5-1  The principle of ship response in wind and waves (a) represents the ocean/enviromental conditions; (b) ship 

characteristics (c) ship motions and sea loads. 

A vessel’s general particulars (e.g., length, beam, draft), hull form and metacentric height 

influence seakeeping responses and in turn ship safety and performance (Hirdaris, 2021).  For 

example, small length ships with classic hull forms possibly including bow flare while progressing at 

medium to high forward speeds suffer from large motions. On the other hand, long and bulkier ships 

experience lower motion amplitudes. Shallow drafts may lead to higher risks of keel emergence and 

bow slamming loads in rough seas. In turn, motions may also vary due to loading conditions and 

operational factors. Small hull form adjustments (e.g., reduction of the radius of curvature in way of 

the bilges) can marginally influence ship motions. Notwithstanding this, a large forward waterplane 

can reduce overall motions and the probability of keel emergence. Changes to overall ship 

proportions (e.g., beam to length or beam to draft ratios) may have important consequences. For 

example, reducing the draft of a ship (for a given length and beam) may reduce ship motion 

amplitudes. The ship beam relates with metacentric height. Whereas a large metacentric height 

improves initial stability, it may also lead to high hull natural frequencies which are usually associated 

with poor motion sickness indices. On the other hand, if the metacentric height is too small motions 

are smoother but the risk of capsize increases dramatically.  
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2. Basic definitions  

A ship is a six degree of freedom (6-DoF) rigid body system. Motions (1 - 3) are linear displacements 

(translations) known as surge, sway and heave.  Motions (4 - 6) are rotations known as roll, pitch and 

yaw. All motions are measured relative to the ship as shown in Figure 5-2. 
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Figure 5-2 Ship seakeeping degrees of freedom 

 

• Surge describes the horizontal oscillations of the ship toward the bow and the stern.  

• Sway is a side - side motion. A vessel moving to starboard travels in positive sway direction.  

• Heave is the vertical motion. By convention, positive heave points downwards (toward the water 

bottom). So, a vessel that is sinking into the water (i.e. increasing her draft) is moving in the 

positive heave direction.  

• Roll is a rotational motion about the surge axis. If the starboard and port sides move vertically but 

in opposite directions (i.e. the starboard side is moving up while the port side is moving down). By 

convention positive roll angles correspond to the starboard moving downwards while the port 

side moves in the opposite direction.  

• Pitch is the rotational motion about the sway axis. When pitching, the bow and stem are moving 

vertically in opposite directions (i.e. when the bow is moving up and the stem is moving down). 

Pitch is positive when the bow is pointing upwards in relation to a level ship.  

• Yaw is the rotational motion about the heave axis. It describes the turning motion of the ship. 

When the bow moves in the starboard direction, we assume that the yaw angle is positive. 

Amongst the above mentioned 6 - DoF the most significant ones are those that have a restoring force 

associated with them. For example, a wave push to the vessel’s side (known as the sway motion 

effect) may be inconvenient in terms of navigation. However, the effect is limited in time as there are 
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no restoring forces. On the other hand, if a ship is pushed over so that her starboard deck drops while 

waves pass over, returning to her original upright position is critical in terms of avoiding capsize.  

Figure 5-3 illustrates an example of restoring forces emerging from heave movements. In linear 

seakeeping we can assume that heave is a rigid body response proportional to the distance displaced. 

This is because of the disparity between displacement and buoyancy forces that may be considered 

linear for different waterlines. Of course, ships that have a large water plane area for their 

displacement will experience much greater heave restoring forces than ships with small water plane 

areas. So “beamy” ships such as tugs and fishing vessels will suffer short period heave oscillations 

and high heave accelerations. Conversely, ships with small water plane areas will have much longer 

heave periods and experience lower heave accelerations. In general, as acceleration reduces, comfort 

is reassured. This concept is taken to extremes in the case of offshore floating platforms that have 

very small water plane area compared to their displacement. 
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Figure 5-3 Simplistic idealization of the heave restoring force (FB = Buoyancy; Δ = displacement)  

When ship dynamics are accounted for, the encounter frequency (𝜔𝑒) with the waves is used 

instead of the absolute wave frequency (𝜔). This is because a ship that is moving relative to the 

waves, will meet successive peaks and troughs in short or long-time intervals. Her dynamic behavior 

depends on whether she is advancing into the waves or travelling in their direction. If we assume that 

the waves and the ship are on a straight course, the frequency with which the ship will encounter a 

wave crest depends on the wavelength (𝜆) defined as the distance between the wave crests, the 

speed (or celerity) of the waves (𝑐), the speed of the ship ( ) and the relative angle between the ship 

heading with the wave heading (μ), see Figure 5-4. This is the reason why the encounter period is 

defined as the distance traveled (λ) divided by the speed the ship encounters the waves (𝑐 −

   𝑐𝑜𝑠(𝜇)). Therefore, the encounter frequency is defined as 
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 𝜔𝑒 =
2𝜋

𝑇𝐸
=

2𝜋

𝜆
(𝑐 −  𝑐𝑜𝑠(𝜇)) = 𝑘(𝑐 −  𝑐𝑜𝑠(𝜇)) = 𝜔 − 𝑘 𝑐𝑜𝑠𝜇 (5-1) 

In deep waters the wave number 𝑘 =  
𝜔2

𝑔

 

 lea ing t , 

 𝜔𝑒 = 𝜔 −
𝜔2

𝑔
 𝑐𝑜𝑠(𝜇) (5-2) 
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Figure 5-4 Ship seakeeping encounters idealizations 

To describe the position and orientation of a ship, different coordinate systems may be used (see 

Figure 5-5). The earth fixed inertial coordinate system {𝑛} is used to define the position of the vessel 

on the earth, the direction of wind, waves and current. It is determined by a tangent plane attached 

at a point of interest (𝑂𝑛). The positive unit vector (𝑛1) points towards the true North, (𝑛2) points 

towards the East, and (𝑛3) points towards the interior of the earth. When using such system, the 

inertial assumption is considered reasonable because the velocity of marine vehicles is relatively 

small and thrust forces due to the rotation of the Earth may be considered negligible relatively to the 

hydrodynamic forces. The body-fixed coordinate system (𝑂𝑏) is fixed to the hull and is used to 

express velocity and acceleration measurements taken onboard or for the idealization of 

performance motion indices. The positive unit vector (𝑏1) points towards the bow, (𝑏2) points 

towards starboard and (𝑏3) points downwards.  For ships, the axes of this frame are often chosen to 

coincide with the principal axes of inertia. The seakeeping coordinate system (𝑠) located at the 

center of gravity of the vessel moves at the average speed of the vessel and follows her path. It is 

used to define the wave elevation at the vessel’s average location and to compute the hydrodynamic 

forces using software. This system is fixed to the vessel’s equilibrium state, which is defined by the 

average speed and heading. The positive unit vector (𝑠1) points forward and is aligned with the 

average forward speed. The positive unit vector (𝑠2) points towards starboard, and (𝑠3) points 

downwards.  
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Figure 5-5 Illustration of the three reference frames  

 

3. The dynamics of the rigid ship 

The fundamental principles discussed in this section are discussed in various basic textbooks dealing 

with structural dynamics and stochasticity (e.g. Brouwers, 2006; Newland, 2012). However, for 

practical reasons the discussion is presented in an analogous format to principles of naval 

architecture dynamics and seakeeping in rough weather (e.g., see Lloyd, 1989 ; Naess and Moan, 

2013). 

3.1 The spring mass system analogy 

The seakeeping behavior of a ship is similar to the classic oscillatory response of a damped spring-

mass system. If we consider the general form of the typical single degree of freedom (1-DOF) system 

of such kind with force excitation varying in time while the mass is displaced in either direction, the 

spring will be compressed or placed in tension as shown in Figure 5-6). This will generate a “restoring 

force” that attempts to return the ship to her original location. Provided that the spring remains 

within its linear operating region, the size of the force will be proportional to the amount of 

displacement. However, because of inertia effects, the mass will overshoot from its original point of 

reference; hence the spring oscillations shall generate another linear restoring force in the opposite 

direction that enacts to restore the mass to its central position. This dynamic behavior will be 

repeated until the effects of the damper dissipate the energy stored by the system oscillations.  
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Figure 5-6 Typical spring-mass system with damper 

 

For such system idealization Newton’s 2nd law of motion applies as follows 

 

 ∑ �⃗� = 𝑚�̈�    (5-3) 

 

where ∑ �⃗� is the total force, 𝑚 is the mass of the body and �̈� is the acceleration. Decomposition of 

Eq (5-2) leads to  

 

 
−𝑘𝑥 − 𝑐�̇� + 𝐹 = 𝑚�̈�

 
⇒ 

 
⇒ 𝑚�̈� + 𝑐�̇� + 𝑘𝑥 = 𝐹(𝑡)      

(5-4) 

where c is the damping coefficient and 𝑘 is the stiffness. 

From a physical viewpoint what is presented in Eq. (5-3) is similar to the case of a ship floating on 

waves as an 1-DOF system. The stiffness term is mainly attributed to buoyancy force. To realize the 

significance of this term just imagine the ideal case for which a ship undergoes pure heave motion. If 

you push the ship downwards in the water, based on “Archimedes Principle” (Hirdaris, 2021) there 

will be an extra buoyant force acting upwards in excess of the ship’s displacement. If you then release 

the downward force on the ship, she will move up. Likewise, lifting a ship out of the water will result 

in lower buoyancy force than the ship’s displacement. So, when released the ship will move down.  

 

3.2 Free undamped vibration of 1- DOF system 

If we assume the ship is a conservative system (i.e., no energy losses occur), Equation (5-4) becomes 

 𝑚�̈� + 𝑘𝑥 = 0 (5-5) 

Rigid body dynamic response can be extracted by assuming a sinusoidal solution 𝑥 = 𝑒𝜆𝑡leading to  

 𝜆2𝑚 + 𝑘 = 0,  𝜆 = ±√
𝑘

𝑚
= ±𝑗𝜔𝑛 (5-6) 
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where 𝜔𝑛 = √𝑘/𝑚 represents that natural frequency of the oscillation. The response may then be 

defined as 

 

𝑥 = 𝐴1𝑒
𝑗𝜔𝑛𝑡 + 𝐵1𝑒

−𝑗𝜔𝑛𝑡 = 

= 𝐴 𝑠𝑖𝑛(𝜔𝑛𝑡) + 𝐵 𝑐𝑜𝑠(𝜔𝑛𝑡) = 

= 𝑋 𝑠𝑖𝑛(𝜔𝑛𝑡 + 𝜙) 

(5-7) 

 

In Eq (5-6) the amplitude 𝑋 = √𝐴2 + 𝐵2 and the phase 𝜙 = 𝑡𝑎𝑛−1 (𝐵/𝐴).  

 

If at the start of the oscillation (i.e., at t = 0) the ship displacement is 𝑥  the velocity becomes �̇�(𝑡 =

0) = 𝑣 , leading to: 

 𝑋 =
√𝜔𝑛

2𝑥0
2+𝑣0

2

𝜔𝑛
      

(5-8)  

   𝜙 = 𝑡𝑎𝑛−1(
𝜔𝑛𝑥 

𝑣 
) (5-9)  

Thus, the final solution of the system displacement, Figure 5-7, velocity and acceleration become 

 

𝑥(𝑡) = 𝑋 sin(𝜔𝑛𝑡 + 𝜙) =
1

𝜔𝑛

√𝜔𝑛
2𝑥 

2 + 𝑣 
2 sin (𝜔𝑛𝑡 + 𝜙)

�̇�(𝑡) = 𝑋𝜔𝑛 c s(𝜔𝑛𝑡 + 𝜙) = √𝜔𝑛
2𝑥 

2 + 𝑣 
2 c s(𝜔𝑛𝑡 + 𝜙)

�̈�(𝑡) = −𝑋𝜔𝑛
2 sin(𝜔𝑛𝑡 + 𝜙) = −𝜔𝑛√𝜔𝑛

2𝑥 
2 + 𝑣 

2 sin(𝜔𝑛𝑡 + 𝜙)

 

 

(5-10) 
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Figure 5-7 Free undamped vibration response 

3.3 Free damped vibration of single DOF system 

In reality, the ship will not behave as a conservative system; i.e. the amplitude of oscillation will 

reduce with time due to damping effects. Even a low level of damping will allow for several 
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oscillations before she comes to rest. Thus, if we may still assume free oscillations and accordingly 

Eq. (5-7) takes the form :  

 𝑚�̈� + 𝑐�̇� + 𝑘𝑥 = 0 (5-11) 

Assuming sinusoidal solution 𝑥 = 𝑒𝜆𝑡 the equation becomes  

 𝑚𝜆2 + 𝑐𝜆 + 𝑘 = 0,    𝜆1,2 =
−𝑐 + √𝑐2 − 4𝑚𝑘

2𝑚
 (5-12) 

 

There are three different types of motions associated to the above namely:  

 

• if 𝜆1,2 ∈ 𝔑 then the determinant 𝑐2 − 4𝑚𝑘 > 0 and the system is considered 

overdamped ; i.e. the response is very slow and looks like an exponential decay signal. 

• if 𝜆1,2 ∈ 𝔗𝔪 the determinant 𝑐2 − 4𝑚𝑘  0 and the system is underdamped; i.e. the 

response is very fast and looks like a rapidly decaying oscillation where the amplitudes of 

oscillation look smaller and smaller until equilibrium is reached. 

• if 𝜆1 = 𝜆2 ∈ 𝔑 and 𝑐2 − 4𝑚𝑘 = 0 then the damping factor becomes critical, 𝑐𝑐𝑟 =

√4𝑚𝑘 = 2𝑚𝜔𝑛. In this case the system is critically damped; i.e. the system is allowed to 

overshoot and then come back to equilibrium state (i.e. at rest) relatively fast and without 

any oscillations. 

 

A dimensionless system parameter that describes how rapidly the oscillations decay is the damping 

ratio (휁) defined as  

 

 휁 =
𝑐

𝑐𝑐𝑟
=

𝑐

2𝑚𝜔𝑛
=

𝑐

2√𝑘𝑚
→ 𝑐 = 2𝑚𝜔𝑛휁 (5-13) 

 

where c is the damping coefficient, ccr is the critical damping coefficient. If we use this dimensionless 

notation the roots of Equation (5-12) can be expressed as: 

 

 𝜆1,2 = 𝜔𝑛[−휁 ± √휁2 − 1] (5-14) 

 

Accordingly, the three types of motions can be defined as:  

• 휁 > 1 for the overdamped case  

• 0  휁  1 for the underdamped case and  

• 휁 = 1 for the critically damped case 

 

The linear sinusoidal response of the system in terms of the roots expressed in Equation (5-14) can 

be defined as: 

 𝑥(𝑡) = 𝑎1𝑒
𝜆1𝑡 + 𝑎2𝑒

𝜆2𝑡 (5-15) 
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Therefore, 𝜆1 and 𝜆2 are part of the solution, for an underdamped case this leads to: 

 

 𝜆1,2 = −휁𝜔𝑛 ± 𝜔𝑛√휁2 − 1 = −휁𝜔𝑛 ± 𝜔 𝑗 (5-16) 

   

where 𝜔 = √1 − 휁2 (5-17) 

 

If we follow similar process to the one demonstrated in Section 3.2, we can obtain the two unknowns 

𝐴 and 𝜙 in equation (5-18). Hence, the response becomes: 

 

 𝑥(𝑡) = 𝐴𝑒− 𝜔𝑛𝑡 𝑠𝑖𝑛(𝜔 𝑡 + 𝜙) 

(5-18) 

  

for 
𝑥(𝑡) = √

(𝑣 + 𝑥 휁𝜔𝑛)2 + (𝑥 𝜔 )2

𝜔 
2 𝑒− 𝜔𝑛𝑡      

an  𝑠𝑖𝑛 (𝜔 𝑡 + 𝑡𝑎𝑛−1(
𝑥 𝜔 

𝑣 + 𝑥 휁𝜔𝑛
)) 

 

So the response for overdamped and critically damped cases are given by Eqs. (5-19) and (5-20) 

respectively  

 𝑥(𝑡) = 𝑎3𝑒
(− 𝜔𝑛+𝜔𝑑)𝑡 + 𝑎4𝑒

(− 𝜔𝑛−𝜔𝑑)𝑡 (5-19) 

   

 𝑥(𝑡) = [𝑥 + (𝑣 + 𝜔𝑛𝑥 )𝑡]𝑒
−𝜔𝑛𝑡 (5-20) 

 

Noted that the response of the overdamped solution is not oscillatory, which is considered a 

preferable case however it is difficult to achieve. Underdamped response is also non-oscillatory, but 

it provides the fastest solution that return to zero after time. 

 

𝑥(𝑡)

𝑡

 

Figure 5-8 The three cases of damped free vibration response 
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A practical way to assess damping that is broadly applicable in ship dynamics is the damping decay 

Figure 5-9. This can be mathematically expressed using the log decrement 𝛿 that is the natural 

logarithm of the ratio of two successive amplitudes. The natural logarithm of the ratio of the first two 

successive amplitudes 𝑋1and 𝑋2is defined based on the underdamped solution as follows 

 

 𝛿 =  𝑛
𝑋1

𝑋2
=  𝑛

𝐴𝑒− 𝜔𝑛𝑡1

𝐴𝑒− 𝜔𝑛(𝑡1+𝑇𝑑)
=  𝑛 𝑒 𝜔𝑛𝑇𝑑 = 휁𝜔𝑛𝑇  (5-21) 

   

 𝑇 =
2𝜋

𝜔 
 an  theref re 𝛿 =

2𝜋휁𝜔𝑛

𝜔 
=

2𝜋휁

√1 − 휁2
 (5-22) 

   

Since the damping ratio is very small in that case, the log decrement can be approximated by 

 

 𝛿 = 2𝜋휁 (5-23) 

 

  

Figure 5-9 Roll angle decay response (left) of a tanker ship model (right) ©Jane-Frances 2020 

 

3.4 Forced vibration of 1- DOF system 

In practice ships never operate in conditions that there is no heaving, rolling or pitching. Therefore, 

to suitably idealize ship oscillations in time, it is necessary to account for the energy from waves. This 

energy is required to overcome the energy dissipated because of damping. In practical terms, fluid 

forces from the wave environment representing “the injected energy” should be accounted for when 

evaluating the ship motions that depend on the mass of the ship. To maintain ship oscillations, a 

force having the same frequency as the “simple harmonic motion” of the system is required. To 

illustrate the above principle let us consider adding a harmonic excitation to the vibration system 

where 𝐹(𝑡) varies in sinusoidal manner instead of being arbitrary function in time. In this case Eq. (5-

7) becomes 

 

 𝑚�̈� + 𝑐�̇� + 𝑘𝑥 = 𝐹(𝑡) = 𝐹 𝑐𝑜𝑠(𝜔𝑒𝑡)
 
⇒ (5-24) 
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where 𝐹  is the forcing amplitude and 𝜔𝑒 the encounter frequency representing the frequency at 

which the waves past the ship. The solution to this equation will be a system that experiences  

transient dynamics to the point that the ship’s natural buoyant / damping response to the initial 

displacement and then an equilibrium solution will have the same frequency as the excitation force.  

Implementation of the same process followed in section 3.4 leads to the expression  

 

�̈�(𝑡) + 2휁𝜔𝑛�̇�(𝑡) + 𝜔𝑛
2𝑥(𝑡) = 𝑓 𝑐𝑜𝑠(𝜔𝑡)  for 𝑓 = 𝐹 /𝑚 (5-25) 

 

The general solution of the 2nd order differential Equation (5-25) is given when 

 

 �̈�𝑔(𝑡) + 2휁𝜔𝑛�̇�𝑔(𝑡) + 𝜔𝑛
2𝑥𝑔(𝑡) = 0  (5-26) 

leading to,  

 

𝑥𝑔(𝑡) = 𝐴𝑒− 𝜔𝑛𝑡 𝑠𝑖𝑛(𝜔 𝑡 + 𝜙), 

 

𝜔 = 𝜔𝑛√1 − 휁2 

(5-27) 

 

where terms 𝐴 and 𝜙 represent the amplitude and phase of the response. The particular solution of 

Equation  (5-25) is given by solving the differential equation 

 

 �̈�𝑝(𝑡) + 2휁𝜔𝑛�̇�𝑝(𝑡) + 𝜔𝑛
2𝑥𝑝(𝑡) = 𝑓 𝑐𝑜𝑠(𝜔𝑡) (5-28) 

 

There are two possible trial solutions namely, 

 

 

𝑥𝑝(𝑡) = 𝐴𝑠 𝑐𝑜𝑠(𝜔𝑡) + 𝐵𝑠 𝑠𝑖𝑛(𝜔𝑡)  r  

 

𝑥𝑝(𝑡) = 𝑋 𝑐𝑜𝑠(𝜔𝑡 − 휃) 

(5-29) 

where 

 𝑋2 = 𝐴𝑠
2 + 𝐵𝑠

2,              휃 = 𝑡𝑎𝑛−1( 𝐵𝑠/𝐴𝑠) (5-30) 

 

If we substitute the trial solution in the equation of motion we get, 

 

 
(−𝐴𝑠𝜔

2 +  2𝐵𝑠휁𝜔𝑛𝜔 + 𝐴𝑠𝜔𝑛
2 − 𝑓 ) ⋅ 𝑐𝑜𝑠(𝜔𝑡) + (−𝐵𝑠𝜔

2 − 2𝐴𝑠휁𝜔𝑛𝜔

+ 𝐵𝑠𝜔𝑛
2) ⋅ 𝑠𝑖𝑛(𝜔𝑡) = 0 

(5-31) 

 

For this equation to be zero at any time t, the two coefficients multiplied by 𝑠𝑖𝑛(𝜔𝑡) and 𝑐𝑜𝑠(𝜔𝑡) 

must be zero. Thus 

 

 −𝐴𝑠𝜔
2 +  2𝐵𝑠휁𝜔𝑛𝜔 + 𝐴𝑠𝜔𝑛

2 − 𝑓 = 0 (5-32) 

 
 

−𝐵𝑠𝜔
2 − 2𝐴𝑠휁𝜔𝑛𝜔 + 𝐵𝑠𝜔𝑛

2 = 0 
(5-33) 
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Solving these two equations we can find the two unknowns 

 

 

𝐴𝑠 =
(𝜔𝑛

2−𝜔2)𝑓0

(𝜔𝑛
2−𝜔2)2+ (2 𝜔𝑛𝜔)2

     and    

 

  𝐵𝑠 =
2 𝜔𝑛𝜔𝑓0

(𝜔𝑛
2−𝜔2)2+ (2 𝜔𝑛𝜔)2

     

(5-34) 

 

The particular solution after solving the unknowns becomes, 

 

 

𝑥𝑝(𝑡) = 𝐴𝑠 𝑐𝑜𝑠(𝜔𝑡)  + 𝐵𝑠 𝑠𝑖𝑛(𝜔𝑡) 

 

𝑥𝑝(𝑡) =
(𝜔𝑛

2 − 𝜔2)𝑓 
(𝜔𝑛

2 − 𝜔2)2 + (2휁𝜔𝑛𝜔)2
𝑐𝑜𝑠(𝜔𝑡) +

2휁𝜔𝑛𝜔𝑓 
(𝜔𝑛

2 − 𝜔2)2 + (2휁𝜔𝑛𝜔)2
𝑠𝑖𝑛(𝜔𝑡) 

(5-35) 

   

or 

 

𝑥𝑝(𝑡) = 𝑋 𝑐𝑜𝑠(𝜔𝑡 − 휃) 

where 𝑋 =
𝑓0

√(𝜔𝑛
2−𝜔2)2+(2 𝜔𝑛𝜔)2

     and       휃 = 𝑡𝑎𝑛−1[
2 𝜔𝑛𝜔

𝜔𝑛
2−𝜔2] 

𝑥𝑝(𝑡) =  
𝑓 

√(𝜔𝑛
2 − 𝜔2)2 + (2휁𝜔𝑛𝜔)2

 𝑐𝑜𝑠  (𝜔𝑡 − 𝑎𝑟𝑐𝑡𝑎𝑛 [
2휁𝜔𝑛𝜔

𝜔𝑛
2 − 𝜔2

]) 

(5-36) 

 

Eventually, the full solution is the summation of the general solution and the particular solution 

 

 

𝑥(𝑡) = 𝑥𝑔(𝑡) + 𝑥𝑝(𝑡) 

 

𝑥(𝑡) =  𝐴𝑒− 𝜔𝑛𝑡 𝑠𝑖𝑛(𝜔 𝑡 + 𝜙) + 𝑋 𝑐𝑜𝑠(𝜔𝑡 − 휃) 

(5-37) 

 

If we solve 𝐴 and 𝜙 using the initial conditions 𝑥(0) = 𝑥 , and �̇�(0) = 𝑣  

 

 𝜙 = 𝑎𝑟𝑐𝑡𝑎𝑛[
𝜔 (𝑥 − 𝑋 𝑐𝑜𝑠 휃)

𝑣 + (𝑥 − 𝑋 𝑐𝑜𝑠 휃)휁𝜔𝑛 − 𝜔𝑋 𝑠𝑖𝑛 휃
] (5-38) 

 

 

𝐴 =
𝑥 − 𝑋 𝑐𝑜𝑠 휃

𝑠𝑖𝑛 𝜙
 

(5-39) 

 

The first term in the full solution is the transient solution, which tends to zero as the time goes to 

infinity, while the second term is the steady oscillatory solution (see Figure 5-10 ). The second term 

is of more importance as it is the steady solution. In many cases, we neglect the transient solution. 
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The full solution then reduces to the particular solution presented in Eq. (5-36).   

𝑥𝑝(𝑡) = 𝑋 𝑐𝑜𝑠(𝜔𝑡 − 휃).   

 

Figure 5-10 Harmonic excitation damped vibration 

4. The concept of dynamic magnification factor 

As explained in section 3.4 the equation of motion subject to a sinusoidal force is 

 

 𝑚�̈� + 𝑐�̇� + 𝑘𝑥 = 𝐹(𝑡) = 𝐹 𝑐𝑜𝑠(𝜔𝑒𝑡) (5-40) 

 

where 𝐹  is the forcing amplitude and 𝜔𝑒 the encounter frequency representing the frequency at 

which the waves past the ship. The solution to this equation expresses the dynamics of a system that 

experiences transient excitations to the point that the natural buoyant / damping response to the 

initial displacement and then an equilibrium solution will have the same frequency as the excitation 

force. A trial solution of the order 𝑥 = 𝑥 𝑐𝑜𝑠(𝜔𝑒𝑡 − 𝜙), leads to �̇�  = −𝜔𝑒𝑥 𝑠𝑖𝑛(𝜔𝑒𝑡 − 𝜙) and �̈�  =

−𝜔𝑒
2𝑥 𝑐𝑜𝑠(𝜔𝑒𝑡 − 𝜙). Thus, the solution to Eq. (5-36) becomes  

 

 𝑋 =
𝐹 

√(𝑘 − 𝑚𝜔𝑒
2)2 + 𝑐2𝜔𝑛

2
 (5-41) 

 
 

𝜙 = 𝑡𝑎𝑛−1 (
𝑐𝜔𝑛

𝑘 − 𝑚𝜔𝑒
2
) 

(5-42) 

In practice,  

• the natural frequency defined as 𝜔𝑛 = √
𝑘

𝑚
 expresses the frequency at which the system of 

stiffness (k) and mass (m) oscillates on its own when disturbed from equilibrium; 

• the frequency ratio tuning factor (Λ =  
𝜔𝑒

𝜔𝑛
) can be defined as the aspect ratio of the 

excitation to the natural frequency of the system; 
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• the damping ratio defined as  휁 =
𝑐

2√𝑘𝑚
  expresses the lost energy encompassed in same 

system with damping factor 𝑐; 

 

Therefore Eqs.(5-41) and (5-42) take the form 

 

 𝑋 =
𝐹 

𝑘√(1 − Λ2)2 + (2휁Λ)2
𝑐𝑜𝑠(𝜔𝑒𝑡 − 𝜙) (5-43) 

 
 

𝜙 = 𝑡𝑎𝑛−1 {
2휁Λ

1 − Λ2
} 

(5-44) 

 

The amplitude of the response can be represented in dimensionless form by the so-called 

magnification factor (𝑄)  

 

 𝑄 =
𝐴𝑚𝑝 𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑜𝑠𝑐𝑖 𝑎𝑡𝑖𝑜𝑛

𝐸𝑞𝑢𝑖𝑣𝑎 𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑖𝑐 𝑑𝑖𝑠𝑝 𝑎𝑐𝑒𝑚𝑒𝑛𝑡
=

𝑋 

𝐹 
𝐾⁄

=
1

√(1 − Λ2)2 + (2휁Λ)2
 (5-45) 

 

Eq. (5-45) may be used to measure the amplitude and phase angle of the ship response in 

dimensionless format.  This means that for a given forcing amplitude, F0, the response amplitude 

changes depending on the damping factor and the tuning factor. The damping factor (휁) relates to 

how much damping there is in the system. The larger the damping factor the smaller the 

magnification factor (𝑄). Increasing damping reduces the magnitude of the response. So, the tuning 

factor relates to how close the excitation frequency is to the natural frequency. When 𝜔𝑒  =  𝜔𝑛 =

 1, in the absence of damping the response may go to infinity. The presence of damping reduces the 

response amplitude, but the max response will occur at 𝛬 =  1. This peak is called resonance. 

Systems that are overdamped do not show any response amplitudes greater the static response. For 

over damped systems there is no magnification and no resonance. 

 

Figure 5-11 Magnification factor and phase angle representation 
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5. Response to random loading 

Ship motions and sea loads arise from natural phenomena such as waves or turbulence and therefore 

cannot be adequately described by sinusoidal functions. The patterns of fluid actions do not repeat 

at regular intervals. Therefore, the right-hand side of the equation of motion can be expressed in a 

general form 

 𝑀�̈� + 𝐶�̇� + 𝐾𝑥 = 𝐹(𝑡) (5-46) 

In Eq (5-46) 𝐹(𝑡) is a stochastic excitation force attributed to waves. It is highly nonlinear and cannot 

adequately be expressed by sinusoidal or periodic functions. In such cases it is essential to resort to 

statistical analysis methods. According to Brouwers (2006) if we apply a “Fourier integral” on the 

excitation force, 𝐹(𝑡) we can define the external loading as  

 𝐹(𝑡) =
1

2𝜋
∫ 𝐴 (𝜔)𝑒𝑖𝜔𝑡𝑑𝜔

∞

−∞

 (5-47) 

where 𝐴 (𝜔) is the Fourier integral component which enables the time varying quantity,  (t), to be 

expressed in its frequency components 𝜔. Hence, the response becomes, 

 𝑥(𝑡) =
1

2𝜋
∫ 𝐴𝑥(𝜔)𝑒𝑖𝜔𝑡𝑑𝜔

∞

−∞

 (5-48) 

By substituting the response function and its derivatives into Equation (5-46) we obtain 

 

−𝑚 ∫ 𝐴𝑥(𝜔)𝜔2𝑒𝑖𝜔𝑡𝑑𝜔
∞

−∞

+ 𝑐 ∫ 𝐴𝑥(𝜔)𝑖𝜔𝑒𝑖𝜔𝑡𝑑𝜔
∞

−∞

+ 𝑘 ∫ 𝐴𝑥(𝜔)𝑒𝑖𝜔𝑡𝑑𝜔
∞

−∞

 

= ∫ 𝐴 (𝜔)𝑒𝑖𝜔𝑡𝑑𝜔
∞

−∞

 

(5-49) 

 
∫ [(−𝑚𝜔2 + 𝑐𝑖𝜔 + 𝑘)𝐴𝑥(𝜔) − 𝐴𝑝(𝜔)]𝑒𝑖𝜔𝑡

∞

−∞

= 0 

→ [(−𝑚𝜔2 + 𝑐𝑖𝜔 + 𝑘)𝐴𝑥(𝜔) − 𝐴𝑝(𝜔)]𝑒𝑖𝜔𝑡 = 0    

(5-50) 

Hence, 

 𝐴𝑥(𝜔) =
𝐴𝑃(𝜔)

−𝑚𝜔2+𝑐𝑖𝜔+𝑘
     (5-51) 

Equation (5-51) can be written in terms of the frequency ratio 𝛬 

 𝐴𝑥(𝛬) =
𝐴𝑃

𝑛(𝛬)

−𝑚𝛬2+𝛿𝑖𝛬+1
      (5-52) 

Where the parameter 𝛿 =
𝑐

𝑚𝜔𝑛
 determines the magnitude of damping; its effect will be analyzed in 

the resonance condition, Figure 5-14, and 𝐴 
𝑛(𝛬) 

  𝐴 
𝑛(𝛬) =

𝐴𝑃(𝜔)

𝑚𝜔𝑛
2  (5-53) 
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If we multiply this term with the complex conjugate, we get the spectral density for that system 

namely: 

 

𝑆𝑥(𝜔) =  𝑖𝑚
𝑇→∞

1

𝜋𝑇
|𝐴𝑥(𝜔)|2 =  𝑖𝑚

𝑇→∞

1

𝜋𝑇
|

𝐴 
𝑛(𝛬)

−𝑚𝛬2
+ 𝛿𝑖𝛬 + 1

|

2

→ 

𝑆𝑥(𝜔) =
𝑆 

𝑛

(1 − 𝛬2
)2 + 𝛿2𝛬2

 

(5-54) 

As explained by Naess and Moan (2013), at sub-critical case (also known as quasi-static response) 

the system can reach high values of spectral density at small frequencies relative to the natural 

frequency and the stiffness has the major effect on the system. In such case the nominator of 

equation (5-55) nearly equals 1 and the spectral density becomes 

 𝑆𝑥(𝛬) =
𝑆 

𝑛(𝛬)

(1 − 𝛬2)2 + 𝛿2𝛬2
→ 𝑆𝑥 ≈ 𝑆 

𝑛 (5-55) 
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Figure 5-12 Excitation and response spectra of a typical Quasi-static response. 𝛺∗ ≪ 1 (𝛺∗ = 𝛺 /𝜔  and 𝛺  is the 

frequency where most excitation energy occurs) 

At super-critical (also known as dynamic response) the highest values of spectral density lie in only 

high values of frequencies with respect to the natural frequency and damping plays an important 

role 

 𝑆𝑥(𝛬) =
𝑆𝑃

𝑛(𝛬)

(1−𝛬2)2+𝛿2𝛬2 → 𝑆𝑥 ≈
𝑆𝑃

𝑛

𝛬4  (5-56) 

In this case the term involving 𝛬4 in the denominator will dominate, therefore, response is governed 

by inertia forces only. 
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Figure 5-13 Excitation and response spectra of a typical dynamic response 𝛺∗ ≫ 1 
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At resonance condition when there is very low damping the frequency ratio 𝛬 approaches unity. The 

denominator approaches zero, and the spectral density approaches extremely large value: 

 𝑆𝑥(𝛬) =
𝑆𝑃

𝑛(𝛬)

(1−𝛬2)2+𝛿2𝛬2→≈ 
→ 𝑆𝑥 >>>>   (5-57) 
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Figure 5-14 Excitation and response spectra of a typical resonance condition 𝛺∗ = 1 

 

 6. Questions 

1. What is the equation of motion for a spring-mass-damper system subject to sinusoidal excitation? 

Derive motion amplitude, velocity, acceleration and phase. 

2. Define the significance of underdamped, overdamped and critically damped dynamics for an 1-

DOF spring-mass-damper system. Consequently, identify which of the seakeeping DOFs may be 

underdamped or overdamped. 

3. How we can assess the damping coefficient of ships? 

4. Describe the different ship coordinate systems and their use. 

5. What is resonance and why it is relevant for seakeeping dynamics?  

6. Explain the concept of hydrostatic stiffness, added mass and hydrodynamic damping within the 

context of ship dynamics. 

7. What is meant by quasi static, dynamic and resonant responses? 

8. Plot the displacement, velocity and acceleration of a free undamped system assuming 𝐴 =  1, 

𝜔𝑛 = 12 rad/sec, 𝑥0 = 1 𝑚 and 𝑣0 = 1 m/s. What is the relationship between displacement, 

velocity and acceleration? 

9. Plot the transient, steady state and the full solution against time for a damped system under 

harmonic excitation. Assume 𝐴 =  𝑋 =  1;  𝜔 =  2 𝜔𝑛 = 𝜋;    𝜑 =
𝜋

6
 𝑎𝑛𝑑  휁 =  0.1. 

10. Plot the amplitude ratio 𝑋 𝜔𝑛
2 / 𝑓  and phase 휃 against frequency ratio for a damped system 

under harmonic excitation when 휁 =  0.1, 0.25 , 0.5 𝑎𝑛𝑑 0.7 . How does the damping factor affect 

the magnification factor?  
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