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Lecture 6  Ship motions in regular waves 

1. Introduction 

Water is a dense and viscous fluid. Suitable idealization of ship motions is inextricably linked with 

wave induced hydrodynamics and associated floating body accelerations. Hydrodynamic actions are 

facilitated in the equations of motion as an addition to the mass of the object. This is known as the 

added mass effect. The added mass represents the weighted integration of the entire fluid mass 

effected by the accelerating object. Accordingly, Newton’s equation of motion can be simplified to 

read: 

 (𝑎 + 𝑚)𝑥̈ + 𝑏𝑥̇ + 𝑐𝑥 = 𝐹 𝑠𝑖𝑛(𝜔𝑡)   (6-1) 

 

where a stands for added mass, b is the hydrodynamic damping, c is the stiffness, F is the excitation 

due to external environment (assumed herby sinusoidal) and the 𝑥 - variables represent the response 

(acceleration 𝑥̈ , velocity 𝑥̇ and displacement 𝑥).  

Both added mass and hydrodynamic damping coefficients are a function of the frequency of 

oscillation. However, the added mass depends primarily on the shape of the object, the type of 

motion (linear or rotational), and the direction of the motion. In this way, it differs from mass which 

is a quantity independent of motion. Hydrodynamic damping is related to the viscosity of the fluid 

(and hence the frictional drag). However, when a free surface is involved the damping is dominated 

by the generation of waves. The larger the waves generated, the larger the hydrodynamic damping.  

Each degree of freedom that has a restoring force has an associated natural frequency. So, for a 

ship, there is a natural frequency in heave, roll, and pitch. These natural frequencies depend on the 

mass and stiffness properties of the system. For a ship with port-starboard symmetry (e.g. typical 

ocean going or naval vessel) the coupled motions of heave – pitch and sway – roll – yaw can be 

examined separately during seakeeping analysis. Of these five motions only heave pitch and roll have 

a restoring force or moment. The forces provided due to the effects of added mass and damping are 

referred to as hydrodynamic forces. They arise from pressure distribution around the oscillating hull.  

In the following sections the equations of motion heave and pitch and coupled heave pitch and 

roll are discussed. The aim is to provide an introduction to the seakeeping problem. The lecture also 

discusses aspects of relevance to the basic mathematical modelling of roll motions and ship 

stabilisation. The material presented is based on the references by Betram (2000), Matusiak (2021), 

personal communication with Temarel (2018), and the author’s personal knowledge. Students with 

keen interest on the influence of motion coupling may refer to the papers by Ancafora (2017), 

Matusiak (2011), Matusiak (2000), Ruponen et al. (2009) included in the list of references (see section 

8). 
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2. Uncoupled heave motion 

Let us consider the case of a ship in still water which is subject to a mechanical excitation in the form 

of an upward force 𝐹𝑧(𝑡) leading to heave displacement  (𝑡). According to the theory explained in 

Lecture 5 the linear equation of motion for this 1-DOF system in naval architecture terms can be 

expressed as: 

 𝑀𝑧𝑧 ̈ + 𝑁𝑧𝑧 ̇ + 𝐶𝑧𝑧 =𝐹𝑧(𝑡)   (6-2) 

 

For a sinusoidally varying mechanical excitation 𝐹𝑧(𝑡) = 𝐹1𝑒
𝑗𝜔𝑡. Assuming 𝐹1 is a force vector of 

constant amplitude the response will also be sinusoidal namely  (𝑡) =  𝑒𝑗(𝜔𝑡−𝜀) where   is the 

amplitude of excitation and ε the phase lag of the response. Accordingly, 

 

  =
 1

√(𝐶𝑧𝑧−𝜔2  𝑧𝑧 )
2+(𝜔𝑁𝑧𝑧)

2 
  and 𝑡𝑎𝑛𝜀 =

ω𝑁𝑧𝑧

(𝐶𝑧𝑧−𝜔2 𝑧𝑧)
   (6-3) 

where : 

• 𝐶𝑧𝑧 = 𝜌𝑔𝐴𝑤  is the hydrostatic heave restoring force (see Figure 6-1) with 𝜌 representing 

the water density (kg/m3) ; g the acceleration of gravity (m/s2) and Aw the still water lane 

area (m2).’ 

• 𝑁𝑧𝑧 ̇ is the heave damping force provided by the surrounding water  

• 𝑁𝑧𝑧 is the heave damping coefficient.  

• Mzz = m + mzz is the virtual mass of the ship where the mass of the ship is m = ρ𝛻 and mzz is 

the heave added mass.  

 

Figure 6-1  Demonstration of uncoupled heave motion. Underwater shaded areas indicate portion of hull underwater 

section. 

 

In linear hydrodynamic theory the force has a component proportional to the acceleration (the 

added mass) and a component proportional to the velocity (the  damping coefficient). To understand 
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the effect of waves we must consider the effect of the relative position of the ship with respect to 

waves. If we ignore the hydrodynamic effects and apply Newton’s second law of motion (see Lecture 

5) then for the uncoupled heave case we get 

 

   𝑚 ̈ = −𝑊 +  − 𝐶𝑧𝑧( − ϛ) 𝑜𝑟 𝑚 ̈ + 𝐶𝑧𝑧 = 𝐶𝑧𝑧ϛ (6-4) 

 

where ϛ is the wave profile defined with respect to the still water line and z-ϛ is called the relative 

displacement.  

If we assume that the hydrodynamic effects are proportional to the relative velocity and 

acceleration the equation of motion in waves becomes: 

   𝑚 = −𝑚𝑧𝑧( ̈ − ϛ̈) − 𝑁𝑧𝑧( ̇ − ϛ̇) − 𝐶𝑧𝑧( − ϛ)̈  (6-5) 

or 

   (𝑚 + 𝑚𝑧𝑧) ̈ + 𝑁𝑧𝑧 ̇ + 𝐶𝑧𝑧 = 𝑚𝑧𝑧ϛ̈̈ + 𝑁𝑧𝑧ϛ̇ + 𝐶𝑧𝑧ϛ = 𝐹𝑧(𝑡) (6-6) 

Eq. (6-6) shows that for a ship in waves, the surrounding fluid not only provides the hydrostatic and 

hydrodynamic terms but also the wave excitation which is a function of the wave acceleration, 

velocity and displacement. For a stationary ship in a regular wave train of frequency ω the excitation 

term becomes 

 
 

𝐹𝑧(𝑡) = 𝐹𝑧𝑠𝑠𝑖𝑛(𝜔𝑡) + 𝐹𝑧𝑐𝑐𝑜𝑠(𝜔𝑡) = 𝐹̅𝑧𝑠𝑖𝑛(𝜔𝑡 + 𝜓)   

 

(6-7) 

 

The amplitude of the wave excitation is defined as 

 
 

  𝐹̅𝑧 = √𝐹𝑧𝑠
2 + 𝐹𝑧𝑐

2  for 𝐹𝑧𝑠 = 𝐹̅𝑧𝑐𝑜𝑠𝜓    and    𝐹𝑧𝑐 = 𝐹̅𝑧𝑠𝑖𝑛𝜓 

 

(6-8) 

 

Thus Eq. (6-6)  can be re-written as 

 

 𝑀𝑧𝑧 ̈ + 𝑁𝑧𝑧 ̇ + 𝐶𝑧𝑧 =𝐹𝑧𝑠𝑖𝑛(𝜔𝑡 + 𝜓) = 𝐹̅𝑧𝑒
𝑗(𝜔𝑡+𝜓)   (6-9) 

 

The response can be expressed as  (𝑡) =  𝑠𝑖𝑛(𝜔𝑡 + 𝜓 − 𝜀) or in complex notation  (𝑡) =

 𝑒𝑗(𝜔𝑡+𝜓−𝜀).  By back-substitution to Eq. (6-3) we obtain 

 

    [(𝐶𝑧𝑧 − 𝜔2𝑀𝑧𝑧)𝑠𝑖𝑛(𝜔𝑡 + 𝜓 − 𝜀) + 𝜔𝑁𝑧𝑧𝑐𝑜𝑠(𝜔𝑡 + 𝜓 − 𝜀)] = 𝐹𝑧𝑠𝑖𝑛(𝜔𝑡 + 𝜓) (6-10) 

 

An easy way to obtain the heave amplitude (Z) and phase (ε) from Eq. (6-10) is to consider the 

following two cases 

   𝜔𝑡 + 𝜓 − 𝜀 = 0 ⇒  𝜔𝑁𝑧𝑧 = 𝐹̅𝑧si n(𝜀) (6-11) 

   

 𝜔𝑡 + 𝜓 − 𝜀 =
𝜋

2
 ⇒    (𝐶𝑧𝑧 − 𝜔2𝑀𝑧𝑧) = 𝐹̅𝑧c s (𝜀) (6-12) 
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If we square Eqs.(6-11) and (6-12) and add them we produce the amplitude of the response, namely  

 

  = 𝐹𝑧̅/√(𝐶𝑧𝑧 − 𝜔2 𝑀𝑧𝑧 )
2 + (𝜔𝑁𝑧𝑧)

2     (6-13) 

 

If we divide Eq. (6-11) by Eq. (6-12) we define the phase lag as  

 

  𝑡𝑎𝑛(𝜀) =ω𝑁𝑧𝑧/(𝐶𝑧𝑧 − 𝜔2𝑀𝑧𝑧)  (6-14) 

 

For a ship progressing in regular waves with forward speed U and heading χ the variation of the wave 

elevation (and wave velocity and acceleration) with time is sinusoidal with the wave encounter 

frequency (ωe). Thus, Eq. (6-9) becomes 

   𝑀𝑧𝑧 ̈ + 𝑁𝑧𝑧 ̇ + 𝐶𝑧𝑧 =𝐹𝑧𝑠𝑖𝑛(𝜔𝑒𝑡 + 𝜓) = 𝐹̅𝑧𝑒
𝑗(𝜔𝑒𝑡+𝜓) (6-15) 

In the above equation the amplitude and phase of the wave sinusoidal wave excitation is proportional 

to the wave amplitude and is a function of the wave frequency and the ship’s forward speed and 

heading.  

As explained in Lecture 5 the hydrodynamic damping and added mass coefficients are not constant 

values. They vary with the frequency of the ship’s oscillation, i.e. 𝑚𝑧𝑧 = 𝑚𝑧𝑧(𝜔𝑒) ; 𝑁𝑧𝑧 =

𝑁𝑧𝑧(𝜔𝑒) 𝑎𝑛𝑑 𝐹̅𝑧 = 𝑎𝐹𝑧(𝜔,𝜔𝑒).On this basis  Eq. (6-15) can be expressed in the following more 

explicit form  

 

   [𝑚 + 𝑚𝑧𝑧(𝜔𝑒)] ̈ + 𝑁𝑧𝑧(𝜔𝑒) ̇ + 𝐶𝑧𝑧 = 𝑎𝐹(𝜔, 𝜔𝑒)𝑠𝑖𝑛(𝜔𝑒𝑡 + 𝜓) = 𝐹𝑧(𝜔,𝜔𝑒)𝑒
𝑗(𝜔𝑒𝑡+𝜓) (6-16) 

 

The heave amplitude and phase lag are 

 

  =
𝑎 𝑧(𝜔,𝜔𝑒)

√[𝐶𝑧𝑧−𝜔𝑒
2(𝑚+𝑚𝑧𝑧(𝜔𝑒))]

2
+[𝜔𝑒𝑁𝑧𝑧(𝜔𝑒)]

2

  and 𝑡𝑎𝑛𝜀 =
𝜔𝑒𝑁𝑧𝑧(𝜔𝑒)

𝐶𝑧𝑧−𝜔𝑒
2(𝑚+𝑚𝑧𝑧(𝜔𝑒))

   (6-17) 

 

If we assume free motions in waves then Eq. (6-16) becomes 

 

   [𝑚 + 𝑚𝑧𝑧(𝜔𝑒)] ̈ + 𝑁𝑧𝑧(𝜔𝑒) ̇ + 𝐶𝑧𝑧 = 0 (6-18) 

 

Analytical solution of this equation is not possible due to the presence of coefficients which are not 

constants but functions of the encounter frequency. Nevertheless, the free heave displacement will 

be exponentially decaying oscillatory function of time. For an undamped motion  

 

 [𝑚 + 𝑚𝑧𝑧(𝜔𝑒)] ̈ + 𝐶𝑧𝑧 = 0    (6-19) 

 

leading to the characteristic equation  
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   𝐶𝑧𝑧 − 𝜔𝑒
2[𝑚 + 𝑚𝑧𝑧(𝜔𝑒)] = 0 (6-20) 

 

The above equation cannot be solved analytically. However, it is possible to assume a constant value 

of added mass namely 𝑚̅𝑧𝑧 = 𝑚𝑧𝑧(𝜔𝑒 → ∞) and therefore the heave natural frequency in water can 

be approximated as  

   𝜔3𝑛 = √
𝑐𝑧𝑧

𝑚+𝑚𝑧𝑧
 (6-21) 

 

Variation of the nondimensionalized heave added mass, damping coefficient and excitation 

amplitude (for head waves of amplitude 1m) are shown in Figure 6-2 (a,b,c) as a function of the 

encounter frequency for a naval ship. Note that the variations of added mass and damping 

coefficients with speed are very small whilst those of the wave excitation are significant. The 

corresponding heave amplitude (per unit wave amplitude, i.e. the Response amplitude Operator) is 

sown in Figure 6-2(d) for head waves. Both amplitudes and phases of the wave excitation terms are 

functions of wave and wave encounter frequencies.  

 

 

Figure 6-2: Typical nondimensionalized heave added mass, damping coefficients and excitation amplitude for a naval 

ship at different speeds (Mzz= added mass; Nzz = hydrodynamic damping; Fz = excitation amplitude; Z = heave 

amplitude; ρ = density; g = acceleration of gravity). 
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3. Uncoupled pitch motion 

If we consider that the ship is an 1-DOF system subject to pitch excitation namely θ(t) then the 

corresponding mathematical expression to Eq. (6-16) is  

   [𝐼𝑦𝑦 + 𝐼𝜗𝜗(𝜔𝑒)]𝜗̈ + 𝑁𝜗𝜗(𝜔𝑒)𝜗̇ + 𝐶𝜗𝜗𝜗 = 𝑀̅𝜗(𝜔,𝜔𝑒)𝑒
𝑗(𝜔𝑒𝑡+𝑢) (6-22) 

where : 

𝐼𝑦𝑦 is the mass moment of inertia about axis Oy 

𝐼𝜗𝜗 is the pitch added mass moment of inertia 

𝑁𝜗𝜗 is the pitch damping coefficient 

𝐶𝜗𝜗 = 𝜌𝑔𝐼𝑙𝑜𝑛𝑔 for 𝐼𝑙𝑜𝑛𝑔 = l ngit  inal 2nd m ment  f water plane area 

𝑀̅𝜗 is the amplitude of the wave excitation vector 

 

 

Figure 6-3: Uncoupled pitch motion 

 

The solution of this equation is similar to the one presented in Eq.(6-17). The pitch natural frequency 

in water can be approximated as  

 𝜔𝑝 = √
𝑐𝜃𝜃

𝐼𝑦𝑦+𝐼𝜃̅𝜃
    (6-23) 

where 𝐼𝜃̅𝜃 = 𝐼𝜃𝜃 → ∞.  
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4. Coupled heave and pitch motions 

The coupled equations of motion for heave and pitch can be expressed in matrix format as 

 

[
𝑚 + 𝑚𝑧𝑧 𝑚𝑧𝜃

𝑚𝜃𝑧 𝐼𝑦𝑦 + 𝐼𝜃𝜃
] × [

 ̈
𝜃̈
] + [

𝑁𝑧𝑧 𝑁𝑧𝜃

𝑁𝜃𝑧 𝑁𝜃𝜃
] × [

 ̇
𝜃̇
] + [

𝐶𝑧𝑧 𝐶𝑧𝜃

𝐶𝜃𝑧 𝐶𝜃𝜃
] × [

 
𝜃
] =

[
𝐹𝑧(𝜔,𝜔𝑒)𝑒

𝑗(𝜔𝑒𝑡+𝜓)

𝑀̅𝜗(𝜔, 𝜔𝑒)𝑒
𝑗(𝜔𝑒𝑡+𝑢)

]   
(6-24) 

In this matrix equation in addition to heave added mass 𝑚𝑧𝑧 and pitch added inertia 𝐼𝜃𝜃 we have the 

additional terms namely heave into pitch and pitch into heave for added mass and damping  terms 

namely 𝑚𝑧𝜃, 𝑁𝑧𝑧 and 𝑚𝜃𝑧, 𝑁𝜃𝜃. There are no terms in the form of first moments of mass in the inertia 

matrix. The heave into pitch restoring terms are defined as  

   𝐶𝑧𝜃 = 𝐶𝜃𝑧 = 𝜌𝑔𝑀𝑙 (6-25) 

where 𝑀𝑙 = ∫ 𝑥𝐵(𝑥)𝑑𝑥
 

𝐿
 represents the longitudinal first moment of water plane area and 𝐵(𝑥) is 

the beam in way of the water line. 

The above equations indicate that coupling takes place through hydrodynamic and hydrostatic 

actions. All added masses and damping coefficients are dependent on the frequency of oscillation. 

Examples of heave (m/m) and pitch (rad/m) RAOs for a naval ship are shown in Figure 6-4. In these 

figures three different axes were used to illustrate the variation of the RAOs namely ωe, L/λ and λ/L; 

where L : ship length and λ : wave length. It is interesting to note that the peaks of heave and pitch 

occur in the vicinity of L = λ. This phenomenon is called ship wave matching.  
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Figure 6-4 Examples of heave (m/m) and pitch (rad/m) RAOs for a naval ship at different forward speeds (Figures a,c,d 

denote heave; Figures b,d,f denote pitch). 
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5. Small Amplitude Roll  

As explained in Lecture 5 in rigid body ship dynamics there are three rotational degrees of freedom 

namely roll, pitch and yaw (see Figure 5-2). For typical ship shapes, the radii of gyration (ki) have a 

relationship to the ship’s geometry. So, the roll, itch and yaw radii of gyration are defined as 𝑘4 =

0.3 × 𝐵𝑊𝐿 ; 𝑘5 = 0.25 × 𝐿𝑝𝑝 ;  𝑘6 = 0.25 × 𝐿𝑝𝑝  respectively (where BWL : the waterline beam and 

Lpp is the length between perpendiculars)  

If we assume that a ship undertakes small amplitude roll oscillations about her center of mass 

(usually close to the undisturbed water line) then dynamics are described by the equation : 

   [𝐽𝑥𝑥 + 𝐼𝜑𝜑(𝜔)]𝜑̈ + 𝑁𝜑𝜑(𝜔)𝜑̇ + 𝐶𝜑𝜑𝜑 = 𝐾𝜑(𝑡) (6-26) 

where : 

𝐾𝜑(𝑡) is a sinusoidal mechanical excitation producing a rolling moment 𝐾𝜑(𝑡) = 𝐾1𝑒
𝑗𝜔𝑡 ; 

ϕ is the angle of roll; 

Jxx is the mass moment of inertia about the longitudinal axis through the center of mass; 

Cφφ = ΔGMT=ρg𝛻GMT is the hydrostatic roll restoring coefficient; 

Iφφ = roll added inertia (frequency of oscillation dependent); 

Nφφ = roll damping coefficient associated with fin and tank stabilizers. 

It is noted that roll damping increases with forward speed. The increase in damping results in a 

smaller maximum resonant peak, but also a slight reduction in the frequency at which the peak 

response may occur. The mass of a ship is determined by her total weight or displacement. Thus, the 

rotational inertia associated with roll is determined by the distance of each weight from center of 

gravity. The further the heaviest weights are from the center of gravity (COG) of the vessel, the larger 

the rotational moment of inertia. If all of the masses were located equidistantly from COG the 

moment of inertia would be easy to calculate and would be equal to the total mass times the distance 

from the COG squared. If the roll added inertia and damping coefficients are constant the free 

damped equation of motion becomes:  

   [𝐽𝑥𝑥 + 𝐼𝜑𝜑(𝜔)]𝜑̈ + 𝑁𝜑𝜑(𝜔)𝜑̇ + 𝐶𝜑𝜑𝜑 = 0 (6-27) 

If we ignore damping, 

 [𝐽𝑥𝑥 + 𝐼𝜑𝜑(𝜔)]𝜑̈ + 𝐶𝜑𝜑𝜑 = 0   (6-28) 

 

Although the mass in a ship is never located equidistantly from the COG, we can find the 

representative distance the mass would need to be if the ship was idealized as a sphere. This 

representative distance is the radius of gyration, kxx. If we have the radius of gyration, we can find 

the ship’s moment of inertia. Thus, Eq.(6-28) leads to: 
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 𝜌∇(𝑘𝑥𝑥
2 𝜑̈ + 𝑔𝐺𝑀𝑇𝜑)=0 (6-29) 

where 𝑘𝑥𝑥
 is defined as 𝐼 = 𝐼𝑥𝑥 + 𝐼𝜑𝜑 = 𝑚𝑘𝑥𝑥 = 𝜌∇𝑘𝑥𝑥

2   

The roll natural frequency including the effects of added inertia becomes 

   𝜔𝜑 = √
𝐶𝜑𝜑

𝐼𝑥𝑥+𝐼𝜑𝜑
√

𝑔  𝑇

𝑘𝑥𝑥
2  (6-30) 

If we define the constant roll damping coefficient as 𝑁𝜑𝜑 = 2ϛ(𝐼𝑥𝑥 + 𝐼𝜑𝜑)𝜔𝜑 the damped equation 

of motion in still water after dividing terms by the inertia term becomes 

 𝜑 + 2𝜁𝜔𝜑𝜑̇̈ + 𝜔𝜑
2𝜑 = 0   (6-31) 

where ζ is the damping ratio. 

For a ship rolling in waves that are long compared to her beam, the instantaneous wave surface can 

be represented by the wave slope shown in Figure 6-5. 

 

 

Figure 6-5 Illustration of Roll Motion 

If we ignore the effects of roll damping associated hydrodynamic forces (and any other 

environmental forces such as current, wind etc.) and we only consider the hydrostatic buoyancy force 

acting perpendicular to the wave surface (i.e. the wave slope) then provided that the roll angle is 

small, taking moments about G (see Figure 6-5) lead to the equation of motion  

 𝐼𝑥𝑥𝜑̈ = −𝜌𝑔∇𝐺𝑀𝑇𝑠𝑖𝑛(𝜑 − 𝛼) → 𝜌𝑔∇𝐺𝑀𝑇(𝜑 − 𝛼)   (6-32) 

 

The symbols of Eq. (6-32) are depicted in Figure 6-5. Experimental observations first presented by 

“William Froude” indicate that for the case idealized by Eq. (6-32)  the use of maximum surface wave 

slope is recommended. This is because it technically represents an ideal wave profile. Having 
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obtained a simplified form of wave excitation (valid essentially for long waves) we can generalize 

including the effects of damping and added inertia in the form of the equation 

 

 (𝐽𝑥𝑥 + 𝐼𝜑𝜑)𝜑̈ + 𝑁𝜑𝜑𝜑̇ + 𝐶𝜑𝜑𝜑 = 𝐾𝜑𝑐𝑜𝑠(𝜔𝑡)   (6-33) 

 

The response to this sinusoidal excitation is 𝜑(𝑡) = 𝛷𝑐𝑜𝑠(𝜔𝑡 − 𝜀). To obtain the amplitude and 

phase we can back substitute in Eq (6-33) to obtain 

 

   [𝐶𝜑𝜑 − 𝜔2(𝐼𝑥𝑥 + 𝐼𝜑𝜑)]𝛷𝑐𝑜𝑠(𝜔𝑡 − 𝜀) − 𝜔𝑁𝜑𝜑𝛷𝑠𝑖𝑛(𝜔𝑡 − 𝜀) = 𝐾𝜑𝑐𝑜𝑠(𝜔𝑡) (6-34) 

 

An easy way to obtain the roll amplitude (Φ) and phase lag (ε) is to consider the following two cases 

 

   𝜔𝑡 − 𝜀 =
𝜋

2
 𝑒𝑎𝑑𝑖𝑛𝑔𝑡𝑜 − 𝛷𝜔𝑁𝜑𝜑 = −𝐾𝜑si n(𝜀) (6-35) 

   

 𝜔𝑡 − 𝜀 = 0    leading to      𝛷[𝐶𝜑𝜑 − 𝜔2(𝐼𝑥𝑥 + 𝐼𝜑𝜑)] = 𝐾𝜑c s (𝜀) (6-36) 

 

Squaring equations (6-35) and (6-36) and adding them produces the roll amplitude as follows 

 

   𝛷 =
𝐾𝜑

√[𝐶𝜑𝜑−𝜔2(𝐼𝑥𝑥+𝐼𝜑𝜑) ]
2
+(𝜔𝑁𝜑𝜑)

2
 

   (6-37) 

 

Dividing Eq. (6-35) by Eq. (6-36) defines the phase lag as  

 

 𝑡𝑎𝑛𝜀 =
𝜔𝑁𝜑𝜑

𝐶𝜑𝜑−𝜔2(𝐼𝑥𝑥+𝐼𝜑𝜑)
   (6-38) 

 

The amplitude and phase lag of the roll oscillation can be put into the following form  

 

   𝛷 =
𝑎𝑚

√[1−𝛬2 ]2+(2ϛ𝛬)2 
= 𝜇𝑎𝑚   and  𝑡𝑎𝑛𝜀 =

2ϛ𝛬

(1−𝛬2)2
 (6-39) 

 

where 𝜇 is referred to as the magnification factor and 𝛬 =
𝜔

𝜔𝜑
 is the tunning factor. Both 𝜇 and 

amplitude 𝑎𝑚 vary with the frequency of oscillation. At resonance 𝛬 = 1 and 𝛷𝑟𝑒𝑠 =
𝑎𝑚

2ϛ
. 

 

For a ship moving in regular waves with forward speed U and heading angle χ and equation of motion 

similar to Eqs. (6-16) and (6-22) can be written as 

 

 [𝐼𝑥𝑥 + 𝐼𝜑𝜑(𝜔)]𝜑̈ + 𝑁𝜑𝜑(𝜔)𝜑̇ + 𝐶𝜑𝜑𝜑 = 𝐾𝜑(𝜔,𝜔𝑒)𝑠𝑖𝑛(𝜔𝑒𝑡 + 𝛿) = 𝐾𝜑(𝜔,𝜔𝑒)𝑒
𝑗(𝜔𝑒𝑡+𝛿)   (6-40) 
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where the hydrodynamic coefficients and the wave excitation are evaluated from potential flow 

hydrodynamic theory using computational methods such as the ones explained in Lecture 7. 

 

6. Roll in large amplitudes 

Large amplitude roll motions may cause crew and passenger discomfort. In practice, the amount of 

damping provided by the fluid is not always sufficient to reduce the roll amplitude to acceptable 

levels. Figure 6-6 below shows a large roll angle of a ship denoted by 𝜙(𝑡). 

 

Figure 6-6: Large amplitude roll angle of ship 

As explained in Lecture 2 of this course additional mechanisms are commonly used to increase the 

amount of roll damping. These can be grouped as: 

• passive systems which make use of the roll motion and do not require any power source and 

control system  

• active systems which use power to move masses or control surfaces and a control system. 

Typical passive systems are bilge keels, fixed fins, passive tanks and passive moving weights. 

Bilge keels are longer than fins (approximately 2/3 of a ship’s length). Fins have longer chord length. 

Typical active systems are moving fins (retractable or not), active tans and moving weights. Typical 

damping ratios without any active or passive measures are 0.05 – 0.1. With the use of active 

stabilizers the damping ratio can be increased to 0.5 – 0.8. The mathematical background to the 

dynamics of roll stabilisation systems goes beyond the specifics of this course. As an indicative 

example, for roll stabilisation with active fins the equation of motion has some additional terms on 

the right hand side which are referred to as three term controller 

   [𝐼𝑥𝑥 + 𝐼𝜑𝜑(𝜔)]𝜑̈ + 𝑁𝜑𝜑𝜑̇ + 𝐶𝜑𝜑𝜑 = 𝐾𝜑(𝑡) + 𝐶(𝐶1𝜑̈ − 𝐶2𝜑̇ + 𝐶3𝜑) (6-41) 

 

Moving the terms relating to 𝜑 to the left-hand side of the equation leads to  

 

   [𝐼𝑥𝑥 + 𝐼𝜑𝜑(𝜔) − 𝐶𝐶1]𝜑̈ + (𝑁𝜑𝜑 + 𝐶𝐶2)𝜑̇ + (𝐶𝜑𝜑 − 𝐶𝐶3)𝜑 = 𝐾𝜑(𝑡) (6-42) 
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𝐶1 and 𝐶3 decrease with virtual mass moment of inertia and restoring moment whilst 𝐶2 increases 

the damping; 𝐶  is associated with the lift generated by the fin stabilizers and can be evaluated from 

the flow around airfoils as  

 𝐶 = 𝜌𝑎𝐴𝑉2 𝜕𝐶𝐿

𝜕𝑎𝐿
    (6-43) 

where  

 

𝑎 is the distance from roll axis to center of pressure fin 

𝐴 is the fin area (i.e. the product of fin chord and span) 

𝑉 is the velocity into the fin usually assumed to be equivalent to U, i.e. the forward speed of the ship 

𝑎𝐿 is the angle of attack   

𝜕𝐶𝐿

𝜕𝑎𝐿
 is the slope of the lift coefficient surve 

Figure 6-4 shows a typical transfer function for roll motion. The response depends on the ship 

mass, added mass, hydrodynamic damping, buoyancy and excitation frequency in the direction of 

motion. For the zero forward ship speed case the excitation frequency would match the wave 

frequency. However, when the ship has forward speed, the excitation frequency depends on the 

wave frequency and the relative direction of the ship and waves. This resulting excitation frequency 

is the encounter frequency since it is the frequency at which the ship encounters the waves. Figure 

6-7 demonstrates the influence of stabilizers on ship roll motion. 

 

Figure 6-7 Influence of passive tank stabilization on ship roll RAO (roll/wave slope) 

 

7. Questions 

1. Consider a ship of displacement 1000 tonnes and metacentric height GMT = 1m. For the initial 

undisturbed condition her natural roll period is 15 seconds. Determine the natural period for the 

loading case when two masses of 500 tonnes each are moved from 3 m to 6 m either side of the 

ship’s centre line. 
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2. Show how the expressions for roll amplitude and phase lag given by Equation 6-39 are obtained. 

3. For a ship rolling in beam waves the radius of gyration (kxx) including the effects of added inertia is  

4 m and the metacentric height GMT = 0.62m. The magnification factor at resonance is 8. Assuming 

that the damping provided is constant, determine the range of wave lengths over which the 

magnification factor in excess of 2.5. 

4. Assume that the above ship is fitted with fin stabilizers which reduce the magnification factor at 

resonance to unit value. If we neglect the effects of terms C1 and C3 as presented in Equation (6-

42) find the value of C when C2 = 5 s and the ship has a displacement of 1500 tonnes. 

5. Briefly explain what hydrodynamic forces are and how they are important to the equations of 

motion for a ship. 

6. Explain each of the terms for the characteristic equation 6-20. What assumption is needed in order 

to approximate the heave natural frequency? 

7. Which two ship motions are often coupled together and their combined effect studied? What is 

unique about these motions that would make them important to study together? 

8. A ship builder is studying the RAO of a newly designed cargo vessel which is 200 m long and with 

average design speed 12.5 knots.  They notice that the pitch response is unacceptable when the 

wavelength of incoming waves is approximately 190 - 210 m. What is the explanation for the 

similarity in wavelength to ship length that produces this maximum pitch response? How could 

the ship builders reduce this response for a given wavelength? 

9. What effect does the location of the heaviest pieces of onboard equipment from the center of 

gravity have on the sinusoidal mechanical excitation producing a rolling moment? What types of 

ships have heavy machinery located far from the center of gravity of the entire ship? 

10. What is the difference between passive and active control systems with regards to roll damping? 

What are the advantages and disadvantages to each type and which types of ships would you 

expect to utilize one versus the other? 

 

8. References 

Acanfora, M., Montewka, J., Hinz, T., Matusiak, J.(2017). On the Estimation of the Design Loads on 

Container Stacks Due to Excessive Acceleration in Adverse Weather Conditions. Marine 

Structures, 53:105-123. 

Bertram, V. (2000). Practical Ship Hydrodynamics, Butterworth-Heinemann, e-ISBN : 

9780080971520. 

Matusiak, J. (2021). The dynamics of a Rigid Ship - with applications. Aalto University publication 

series SCIENCE + TECHNOLOGY, 4/2021, ISBN : 978-952-64-0398-4 (printed). 



Lecture 6: Ship motions in regular waves 

 

106         © Spyridon Cheirdaris 2021, All rights reserved 

Matusiak, J.E. (2011). On the non-linearities of ship's restoring and the Froude-Krylov wave load part, 

International Journal of Naval Architecture and Ocean Engineering, 3(1):111-115. 

Matusiak. J., (2000). Dynamics of Cargo Shift Onboard a Ship in Irregular Beam Waves. Int. 

Shipbuilding Progress, 47(1): 77-93. 

Ruponen, P., Matusiak, J., Luukkonen, J., Ilus, M. (2009). Experimental Study on the Behavior of a 

Swimming Pool Onboard a Large Passenger Ship. Marine Technology, 26(1):27-33. 

Temarel, P. (2018). Principles of Naval Architecture Dynamics, University of Southampton, 

Department of Ship Science - UK, Personal communication.  

 
 
 

 

 

 

 


