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2. Cepstrum alanysis of speech signals
3. Vector space representation of words

ELEC-E5521 Speech and language processing methods

Spring 2022

Lecture: Mikko Kurimo

Exercises: Juho Leinonen
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Reading material

1. Cepstrum chapter in John R. Deller, John G. Proakis, and John H. L. Hansen: 
Discrete-Time Processing of Speech Signals

2. Homomorphic Speech Analysis chapter (5) in L. R. Rabiner and R. W. Schafer: 
Introduction to Digital Speech Processing (2007).

 http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/speech%20course.html   

3. Mikolov, Tomas, et al. "Efficient estimation of word representations in vector 
space." arXivpreprint arXiv:1301.3781 (2013). 
https://arxiv.org/pdf/1301.3781.pdf 

4. Mikolov, Tomas, et al. Distributed representations of words and phrases and their 
compositionality.Advances in neural information processing systems. 2013. 
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phras
es-and-their-compositionality.pdf
 

5. Baroni, Marco, Georgiana Dinu, and GermánKruszewski. "Don't count, predict! 
A systematic comparison of context-counting vs. context-predicting semantic 
vectors." ACL (1). 2014. http://anthology.aclweb.org/P/P14/P14-1023.pdf 

http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/speech%20course.html
https://arxiv.org/pdf/1301.3781.pdf
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://anthology.aclweb.org/P/P14/P14-1023.pdf
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Slides
1. Today's lecture

2. Homomorphic Speech Analysis, lecture (12) in L. R. Rabiner's 
Digital Speech Processing Course (2015)

http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/speech%20course.ht
ml

3. Word2Vec, ELEC-E5550 - Statistical Natural Language 
Processing, lecture (3) Tiina Lindh-Knuutila (2020) 

4. Distributional approaches to word meanings. Chris Potts, Stanford 
course. Ling 236/Psych 236c: Representations of meaning, Spring 
2013.
https://web.stanford.edu/class/linguist236/materials/ling236-handou
t-05-09-vsm.pdf
 

http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/speech%20course.html
http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/speech%20course.html
https://web.stanford.edu/class/linguist236/materials/ling236-handout-05-09-vsm.pdf
https://web.stanford.edu/class/linguist236/materials/ling236-handout-05-09-vsm.pdf
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Introduction

In linear systems the useful information can easily be 
separated from additive noise by filtering, if we know in 
which frequency range each occur. For example:

 x[n] = x1[n]+w[n], where n is index of time

 x1[n] is the useful signal and w [n] high frequency noise 
 lin. operator I  [.] is a low-pass filter

I [x[n]] = I [x1[n]+w[n]] = I [x1[n]]+ I [w[n]] ≈ x1[n]
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But this is much harder, if the signal and noise are 
convoluted (*). For example the source-filter model of 
speech production: 
s[n] = e[n]*h[n]   
e[n] is the flowing air (source) and h[n] vocal tract (filter)
I [s[n]] = I [e[n]*h[n]] will not help, so
=> We need a new operator that could separate convoluted 
components!
H [s[n]] = H [e[n]*h[n]] = H [e[n]]+H [h[n]]

The complex cepstrum operator transforms convolution into 
addition.
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• Cepstrum was developed to separate convoluted 
signals: e[n]*h[n] 

• Fourier: F [e*h ] = E[k] H[k], where k is index of 
frequency

• Log[ E H ] = Log[ E ] + Log[ H ]
• Linear combination may be separated by linear band-

pass ”filtering” (called liftering in cepstral domain)
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History

• Bogert, Healy, and Tukey, ”The quefrency analysis 
of time series for echoes: Cepstrum, pseudo-
autocovariance, cross-cepstrum and saphe cracking” In 
M. Rosenblatt, ed., Proceedings of the Symposium on 
Time Series Analysisı. J. Wiley & Sons, pp. 209-243, 
NY, 1963.

 Tukey = ”The FFT man”
 spectrum <-> cepstrum
 "quefrency," "gamnitude," ”lifter”, ”alanysis”, “saphe”
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• Noll A. M., ”Cepstrum pitch determination”, JASA 
(Journal of Acoustical Society of America) vol. 41, pp. 
293-309, Feb. 1967.    

• Homomorphic signal processing
– Oppenheim (1967, 1969)
– Shafer (1968)
– Homomorphic ≈ ”same shape”
– ”+” <-> ”*” ; ”linear domain” <-> ”convolution domain”
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Homomorphic System

H[s[n]] = H [e[n]*h[n]] = H [e[n]]+H [h[n]]

Typically, used to separate ”noise” i.e. impulse e[n] from system 
response h[n] using operator H, hoping that:
H [e[n]] ≈ [n]  ja H [h[n]] ≈ h[n].
Cepstrum operator is not an ideal separator, but can approximate a 
homomorphic system.
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How to recognize speech sounds?

A simple procedure:

Measure some characteristic features of the signal and 
train statistical models for them

Good features should be:

1.Compact

2.Discriminative for speech sounds

3.Fast to compute

4.Robust for noise
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Frequency analysis
Calculate the short-time spectrum in short intervals
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Frequency analysis
Calculate the short-time spectrum in short intervals
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Frequency analysis
Calculate the short-time spectrum in short intervals
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Cepstrum
Short-time analysis in frequency scale (vertical direction) 

MFCC = Mel-Frequency Cepstral Coefficients   

...
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Mel scale

Approximation of human 
perception of speech

“Divide the frequency 
scale into perceptually 
equal intervals”:

Linear below 1 kHz, 
logarithmic above 1 kHz
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Mel-Cepstrum
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Computation of MFCC (Mel 
Frequency Cepstral Coefficients)

Picture by B.Pellom
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Speech sample
1. Frames:
short 10ms
windows
2. FFT:
power spectrum
spectrogram

3. Filtering:
mel filter
motivated by
human ear
“essential data”

4. Features:
DCT transform
mel cepstrum
MFCC
-less features
-less correlation

1. Frames:
short 10ms
windows
2. FFT:
power spectrum
spectrogram

3. Filtering:
mel filter
motivated by
human ear
“essential data”

4. Features:
DCT transform
mel cepstrum
MFCC
-less features
-less correlation
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5 speech samples

Very difficult to 
recognize speech 
from this picture...
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Power spectrogram

Speech recognition possible

Lot of data

Lot of redundancy

Lot of noise
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Mel spectrogram

Speech recognition maybe 
easier?

10 x less data

Less redundancy

Less noise
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Mel spectrogram
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Mel spectrogram
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Mel spectrogram
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Mel spectrogram
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Mel spectrogram
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Mel spectrogram
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Mel-frequency cepstral coefficients (MFCC)
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Background noise?
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Background noise?
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Background noise?
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Background noise?
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Background noise?
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Background noise?
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Background noise?
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Background noise?
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To classify speech sounds by features?

Training

1. Extract MFCC from samples of each sound (e.g. 
phoneme)

2. Train a statistical model (mean and variance) 

Testing

1. Record new samples and extract MFCC

2. Choose the best-matching model to be the class
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Real and complex cepstrum

• Classic: Real Cepstrum (RC)
– symmetric

• Generalization: Complex Cepstrum (CC)
– CC saves the phase information of the signal shape
– Has also an anti-symmetric component
– CC coefficients are still always real



40 /60

Definitions

• Real Cepstrum: (x[n] infinite sequence in time)

c[m] = F -1[Log[ | X[k] | ]] [m] = 

        F -1[Log[ | F [x[n]] | ]] [m]

• Complex Cepstrum:

y[m] = F -1[Log[X[k]]] [m] =     
           F -1[Log[ F [x[n]]]] [m] 

Note that we take the Magnitude spectrum!
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Linear prediction LP
LP-model:  G/ (1-a1 z -1-a2 z -2 ... -ap z -p) = [z]

• x[n] causal and minimum phase (impulse response)
y[0] = c[0] = Log[G]  (Markel & Gray)
LP coefficients can be transformed to cepstral coefficients by:

y[0] = Log[G],   y[1] = a[1] ,

y[m] =  a[m] + ∑ t=1, m-1 [(t/m) y[t] a[m-t]]
1 < m ≤ p , where a[m] is m's LP coefficient

Real cepstrum c[m] can be computed from y[m]: 
 c[0] = y[0],  c[m] = y[m]/2 ,  0 < m ≤ p
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Intuition

Source-Filter Theory:  X(w) = S(w) H(w) 
Real cepstrum:  Log[|X(w)|] = Log[|S(w)|] + Log[|H(w)|]
The effects of source and filter in logarithmic spectrum are 
additive => can be separated by linear transformation, if they occur 
at different bands
Voiced source produces a comb structure (fast variation in 
frequency), filter adjusts its envelope (slow variation in frequency)
Fast and slow variations in frequency can be separated by a new 
Fourier transform (IFT)!
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Peak

No peak

Regular comb
structure

Random variation
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Unvoiced
no pitch

Voiced
with pitch

Formant
tracking:
F1,F2,F3



45 /60Picture by L.R.Rabiner

All have peaks 
at formant
frequencies
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Speech sample
1. Frames:
short 10ms
windows
2. FFT:
power spectrum
spectrogram

3. Filtering:
mel filter
motivated by
human ear
“essential data”

4. Features:
DCT transform
mel cepstrum
MFCC
-less features
-less correlation
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power spectrum
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3. Filtering:
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motivated by
human ear
“essential data”

4. Features:
DCT transform
mel cepstrum
MFCC
-less features
-less correlation
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Delta cepstrum
•Speech is dynamic, one way to capture that is taking the time 

derivatives of the short-time cepstrum 
•First derivative = delta cepstrum 
•Second derivative = delta-delta cepstrum
•The simplest way of computing the derivative is just the difference 

of two neighboring cepstral vectors: c[t] - c[t-1]
•The simple difference is very noisy, rather make a least-squares 

approximation to the local slope (smoothed difference including 
several neighbors with suitable weights)
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Exercise, DL 22 April, 2022

1. Compute a cepstrum of a vowel segment and detect the formants

2. Compute the cepstrum from the LPC coefficients and compare it to the 
cepstral transformation

3. Compute the cepstrum of vowel /a/ and /i/ segments and classify the frames in 
the segments by using the distance between the cepstra 

4. Compute the cepstrum of /a/, /m/, /k/ and /s/ segments and recognize the 
phonemes by using the distance to phoneme templates based on A. average 
of all frames and B. center frame.  

See MyCourses for details and guiding. 
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3. Vector space representation of words 

- why to represent words as vectors?

- how to do it?
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The meaning of words?

- “The complete meaning of a word is always contextual, and no study of 
meaning apart from context can be taken seriously.” (Firth, 1939)

- “If we consider words A and B to be more different than A and C, then we will 
often find that the distributions of A and B are more different than the 
distributions of A and C.  In other words, difference in meaning correlates 
with difference in distribution.” (Harris, 1954)

- “You shall know the word by the company it keeps” (Firth, 1957)
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Statistical semantics

Statistical semantics hypothesis:  Statistical patterns of human word usage can 
be used to figure out what people mean (Weaver, 1955; Furnas et al., 1983). 

Bag of words hypothesis:  The frequencies of words in a document tend to 
indicate the relevance of the document to a query (Salton et al., 1975).

Distributional hypothesis:  Words that occur in similar contexts tend to have 
similar meanings (Harris, 1954; Firth, 1957; Deerwester et al., 1990).

Latent relation hypothesis:  Pairs of words that co-occur in similar patterns 
tend to have similar semantic relations (Turney et al., 2003).
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Representing documents in a matrix

“Very sparse. Each column 
is a bag-of-words 
representation of a 
document. In Web search: 
after suitable re-weighting, 
the documents (columns) 
can be ranked according to 
their match for a given 
query (set of rows).” 

An example (Potts, 2013)
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Representing words in a matrix

More dense. Co-
occurrences of words in a 
specified window of text. 
For example, in the same 
document, in the same 
sentence, or next to each 
other (in any order)

An example (Potts, 2013) 
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Modifying the vector spaces

The basic matrix formulation offers lots of variations: 

– window sizes

– word weighting, normalization, thresholding, removing stopwords 

– stemming, lemmatizing, clustering, classification, sampling

– distance measures

– dimensionality reduction methods

– neural networks
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Projecting words to vectors, in practise:
2 initialization methods:

1. “one-hot” vectors: 

[0 … 0 0 1 0 0 … 0] 

every word in the vocabulary 
has its own dimension

orthogonal mapping

very high dimensional

very sparse 

2. random vectors:

several floats or binary

low dimensionality (e.g. 100)

approximately orthogonal

less sparse
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Projecting words to vectors, in practise:
2 ways to define distributed semantical representations:

1. “context vectors”

First compute a word-word 
matrix from a large text corpus 

Then compute new word 
vectors by summing the 
columns, i.e. those words that 
appeared near them, and 
normalizing again  

2. “word2vec”

First train a deep neural network 
from a large training data to 
perform a specific task (e.g. to 
predict a word given its context) 

Then map the words into the first 
hidden layer, so-called “projection 
layer” and use its outputs as the 
word vectors
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Tools

Gensim, Matlab, R, Python NLTK, MALLET, FACTORIE, word2vec, torch, 
tensor flow, and many more…
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Exercise, DL 22 April, 2022

1. Prepare text data, define the vocabulary and list word pairs that occur near 
each other

2. Train a neural network to predict the first word in each word pair given the 
context (the other word) 

3. Take the hidden layer weights as your word embedding and test that it maps 
related words near each other in this vector space

4. Modify your system to see if you can improve the system

5. Compare your system to a reference word2vec system (train it with the same 
data) and a bag-of-words model

See MyCourses for details and guiding.
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