Exercise 1

Problem 1: Introduction to RStudio

a) Change your working directory. Try the commands help(c) and help(matrix).
b) Calculate the affine transformation $\boldsymbol{y}=\boldsymbol{x} \boldsymbol{A}^{-1}+\boldsymbol{b}$, where

$$
\boldsymbol{A}=\left(\begin{array}{ccc}
2 & 1 & 5 \\
-2 & 7 & 0 \\
5 & -8 & -1
\end{array}\right), \quad \boldsymbol{x}^{T}=\left(\begin{array}{c}
8 \\
-4 \\
2
\end{array}\right), \quad \boldsymbol{b}^{T}=\left(\begin{array}{c}
3 \\
10 \\
-19
\end{array}\right)
$$

c) Install the package mvtnorm and load the corresponding functions to your workspace. Set the seed to 123 using the command set.seed(123). Generate 100 observations from a two dimensional normal distribution with expected value $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$. Visualize the observations.

$$
\boldsymbol{\mu}=\binom{3}{1} \quad \text { and } \quad \boldsymbol{\Sigma}=\left(\begin{array}{ll}
4 & 1 \\
1 & 2
\end{array}\right)
$$

d) Use the data from (c) and calculate the sample mean $\overline{\boldsymbol{x}}$ and the sample covariance matrix \boldsymbol{S}_{x}. Calculate the eigenvalues and eigenvectors from the matrix \boldsymbol{S}_{x}. Verify from the data, that the following equations hold: $\operatorname{Tr}\left(\boldsymbol{S}_{x}\right)=$ $\lambda_{1}+\lambda_{2}+\ldots+\lambda_{p}$ and $\operatorname{Det}\left(\boldsymbol{S}_{x}\right)=\lambda_{1} \lambda_{2} \ldots \lambda_{p}$, where λ_{i} are the eigenvalues of \boldsymbol{S}_{x}.
e) Calculate the affine transformation $\boldsymbol{y}_{i}=\boldsymbol{A} \boldsymbol{x}_{i}+\boldsymbol{b}$, where

$$
\boldsymbol{b}=\binom{3}{1} \quad \text { and } \quad \boldsymbol{A}=\left(\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right)
$$

verify that $\overline{\boldsymbol{y}}=\boldsymbol{A} \overline{\boldsymbol{x}}+\boldsymbol{b}$ and $\boldsymbol{S}_{y}=\boldsymbol{A} \boldsymbol{S}_{x} \boldsymbol{A}^{T}$. What does affine equivariance mean in practice?
f) Upload the data from the file Data1.txt into your workspace. Create a function, that centers your data (removes the mean) and pairwise scatterplots the variables. Calculate the sample covariance and correlation matrices and the corresponding eigenvalues- and vectors.

Problem 2: The eigenvalues of a symmetric matrix

Show that the eigenvalues of a real valued symmetric matrix are always real valued.

Homework Assignment 1: Functions

a) Create an R -function that takes a data matrix $\boldsymbol{X} \in \mathbb{R}^{n \times p}, n>p$, as an argument and returns the unbiased estimator of the covariance matrix. Do not use the built-in functions $\mathbf{c o v}(), \operatorname{cor}()$ or any additional R-packages.
b) Create an R -function that takes a full-rank covariance matrix $\boldsymbol{A} \in \mathbb{R}^{p \times p}$ as an argument and returns the square root of the inverse matrix such that $\boldsymbol{A}^{-\frac{1}{2}} \boldsymbol{A}^{-\frac{1}{2}}=\boldsymbol{A}^{\mathbf{- 1}}$.
c) Create an R-function that takes a full-rank covariance matrix \boldsymbol{A} as an argument and returns the corresponding correlation matrix.

