1. Proof of Exercise 1 Demo

Show that the eigenvalues of a real valued symmetric matrix are always real valued.

Let A be a symmetric real valued $p \times p$ matrix $\left(A=A^{\top}\right)$. Note that, if the symmetry condition is dropped, A can have complex valued eigenvalues and -vectors. Let λ_{i} be the i th eigenvalue and v_{i} the corresponding eigenvector of A.

Definition 1.1. A scalar λ_{i} is called an eigenvalue of the $p \times p$ matrix A if there is a nontrivial solution v_{i} to

$$
A v_{i}=\lambda_{i} v_{i}
$$

where v_{i} is called an eigenvector corresponding to the eigenvalue λ_{i}.
Here, trivial solutions are obtained if $v_{i}=0$ (zero vector) since every scalar λ_{i} would then satisfy the equation above. First, we take the complex conjugate from both sides

$$
\begin{aligned}
& \overline{\left(A v_{i}\right)}=\overline{\left(\lambda_{i} v_{i}\right)} \\
& \Rightarrow A \bar{v}_{i}=\bar{\lambda}_{i} \bar{v}_{i},
\end{aligned}
$$

since A is real valued. Then, we multiply the above with v_{i}^{\top} from the left side

$$
\begin{aligned}
& v_{i}^{\top} A \bar{v}_{i}=v_{i}^{\top} \bar{\lambda}_{i} \bar{v}_{i} \\
& v_{i}^{\top} A^{\top} \bar{v}_{i}=v_{i}^{\top} \bar{\lambda}_{i} \bar{v}_{i} \\
& \left(A v_{i}\right)^{\top} \bar{v}_{i}=\bar{\lambda}_{i} v_{i}^{\top} \bar{v}_{i} \\
& \lambda_{i} v_{i}^{\top} \bar{v}_{i}=\bar{\lambda}_{i} v_{i}^{\top} \bar{v}_{i} \\
& \Rightarrow\left(\lambda_{i}-\bar{\lambda}_{i}\right) v_{i}^{\top} \bar{v}_{i}=0 .
\end{aligned}
$$

Note that $v_{i}^{T} I \bar{v}_{i}=\left\langle v_{i}, v_{i}\right\rangle$ is the canonical Hermitian inner product which is ≥ 0 and $\left\langle v_{i}, v_{i}\right\rangle=0$ if and only if $v_{i}=0$. By definition, the eigenvectors cannot be zero vectors. Hereby, $\lambda_{i}=\bar{\lambda}_{i}$ which implies that λ_{i} has to be real valued.

