
1. Proof of Exercise 3 Demo

Show that the sample mean T (·) is affine equivariant.

Let X denote a n×p data matrix of n independent and identically distributed
p-variate observations x1, x2, . . . , xn from some continuous distribution with
a finite covariance matrix Σ. Furthermore, consider the transformation,

yi = Axi + b,

where A is a nonsingular p × p matrix and b is a p-variate location vector.
Let T (·) be the sample mean. Then,

T (X) =
1
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xi,
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(Axi + b) = A
1
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xi +
1

n
(nb) = AT (X) + b.

Show that the sample covariance matrix S (·) is affine equivariant.

Let S (·) be the sample covariance matrix and consider the same trans-
formation as in (a). Then,

S (X) =
1
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n∑
i=1

(xi − T (X)) (xi − T (X))> ,

S (Y ) =
1
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(A (xi − T (X))) (A (xi − T (X)))>

= A
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(xi − T (X)) (xi − T (X))>A> = AS (X)A>.
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