1. Proof of Exercise 6 Demo

Let Z be the matrix defined as in the lecture slides. Then denote the PCA performed on the row profiles as V and on the column profiles as W (scaled and shifted). The matrices are defined the following way:

$$
\begin{aligned}
V & =Z^{\top} Z \\
W & =Z Z^{\top} .
\end{aligned}
$$

Show that V and W have the same nonzero eigenvalues. Furthermore, show that the following relation holds for the normed eigenvectors that correspond to nonzero eigenvalues:

$$
\begin{aligned}
v_{i} & =\frac{1}{\sqrt{\lambda_{i}}} Z^{\top} w_{i} \\
w_{i} & =\frac{1}{\sqrt{\lambda_{i}}} Z v_{i}
\end{aligned}
$$

where v_{i} is the i :th normed eigenvector of V and w_{i} is the i :th normed eigenvector of W.

First, we show that $Z^{\top} Z$ and $Z Z^{\top}$ have the same eigenvalues. From the definition of an eigenvector and -value:

$$
\left\{\begin{array}{l}
V v_{i}=Z^{\top} Z v_{i}=\lambda_{i} v_{i} \\
W w_{i}=Z Z^{\top} w_{i}=\mu_{i} w_{i}
\end{array}\right.
$$

Multiply the first equation with Z from the left side and note that $V=Z^{\top} Z$,

$$
\Rightarrow Z V v_{i}=Z Z^{\top} Z v_{i}=\lambda_{i} Z v_{i}
$$

Thus

$$
\begin{aligned}
Z Z^{\top}\left(Z v_{i}\right) & =\lambda_{i}\left(Z v_{i}\right) \\
\Rightarrow Z Z^{\top} v_{i}^{*} & =\lambda_{i} v_{i}^{*}, \quad \text { where } v_{i}^{*}=Z v_{i} .
\end{aligned}
$$

Hereby, λ_{i} is the eigenvalue of $Z Z^{\top}=W$ with the eigenvector $Z v_{i}$. The squared length of the eigenvector is given by

$$
\left\|Z v_{i}\right\|_{2}^{2}=\left(Z v_{i}\right)^{\top}\left(Z v_{i}\right)=v_{i}^{\top} Z^{\top} Z v_{i}=\lambda_{i} v_{i}^{\top} v_{i}=\lambda_{i} .
$$

Hence

$$
w_{i}=\frac{1}{\sqrt{\lambda_{i}}} Z v_{i} .
$$

The same proof goes to the other direction also.

