1. Proof of Exercise 9 Demo

Show that the solution for the problem:

$$
\max _{a}\left\{\frac{a^{\top} B a}{a^{\top} W a}\right\}
$$

is obtained by setting a equal to the eigenvector of $W^{-1} B$ that corresponds to the largest eigenvalue.

$$
W=\text { measure of group dispersions } \quad B=\text { dispersion between groups }
$$

Since the vector a can be scaled arbitrarily withouth affecting the ratio, we can formulate the problem as follows:

$$
\max _{a}\left\{a^{\top} B a\right\} \quad \text { s.t. } \quad a^{\top} W a=1
$$

Let $W^{1 / 2}$ be the symmetric square root of W. Note that W is symmetric. Let $z=W^{1 / 2} a$ and $a=W^{-1 / 2} z$. Then

$$
\begin{aligned}
& a^{\top} B a=\left(W^{-1 / 2} z\right)^{\top} B\left(W^{-1 / 2} z\right)=z^{\top} W^{-1 / 2} B W^{-1 / 2} z \\
& a^{\top} W a=\left(W^{-1 / 2} z\right)^{\top} W\left(W^{-1 / 2} z\right)=z^{\top} z
\end{aligned}
$$

Note that $W^{-1 / 2} B W^{-1 / 2}$ is symmetric and hereby the spectral decomposition exists $\left(W^{-1 / 2} B W^{-1 / 2}=\Gamma \Lambda \Gamma^{\top}\right.$ and $\left.\Gamma^{\top} \Gamma=I\right)$,

$$
\begin{aligned}
& z^{\top} W^{-1 / 2} B W^{-1 / 2} z=z^{\top} \Gamma \Lambda \Gamma^{\top} z=w^{\top} \Lambda w, \quad\left(w=\Gamma^{\top} z\right) \\
& z^{\top} z=z^{\top} \Gamma \Gamma^{\top} z=w^{\top} w
\end{aligned}
$$

Now we can reformulate the problem as

$$
\max _{w}\left\{w^{\top} \Lambda w\right\}=\max _{w}\left\{\sum_{i=1}^{p} \lambda_{i} w_{i}^{2}\right\} \quad \text { s.t. } w^{\top} w=1
$$

Since $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{p}$, we choose the first element of w to be one and the rest to be 0 . This means that $z=\Gamma w=\gamma_{1}$, where γ_{1} is the first eigenvector of $W^{-1 / 2} B W^{-1 / 2}$ and $a=W^{-1 / 2} z=W^{-1 / 2} \gamma_{1}$.

Note that for any two matrices $A \in \mathbb{R}^{n \times p}$ and $C \in \mathbb{R}^{p \times n}$, the non-zero eigenvalues of $A C$ and $C A$ are the same and have the same multiplicity (Theorem A.6.2 of Mardia, Kent and Bibby). Now let $A=W^{-1 / 2} B$ and $C=W^{-1 / 2}$, this means that the non-zero eigenvalues of $C A=W^{-1} B$ are the same as $A C=W^{-1 / 2} B W^{-1 / 2}$. Hence, λ_{1} is the largest eigenvalue of $W^{-1} B$. Since γ_{1} is the eigenvector corresponding to the largest eigenvalue λ_{1} of $W^{-1 / 2} B W^{-1 / 2}$, we have that

$$
\begin{aligned}
& W^{-1} B\left(W^{-1 / 2} \gamma_{1}\right)=W^{-1 / 2}\left(W^{-1 / 2} B W^{-1 / 2} \gamma_{1}\right)=W^{-1 / 2} \lambda_{1} \gamma_{1} \\
& =\lambda_{1}\left(W^{-1 / 2} \gamma_{1}\right)
\end{aligned}
$$

This shows that $a=W^{-1 / 2} \gamma_{1}$ is the eigenvector of $W^{-1} B$ corresponding to its largest eigenvalue λ_{1}.

