

ELEC-E8126: Robotic Manipulation Motion Planning

Ville Kyrki 25.1.2021

- Robot motion planning problems.
- Graph search and discretization of continuous space.
- Sampling methods.
- A little bit about optimization based methods.

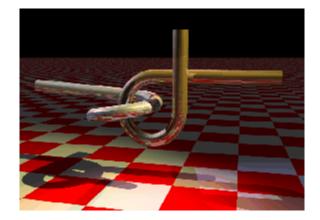
Learning goals

- Understand problems of motion planning as planning of trajectories in search space.
- Understand how discretization can be used to solve continuous planning problems.
 - Especially sampling based discretization approaches.

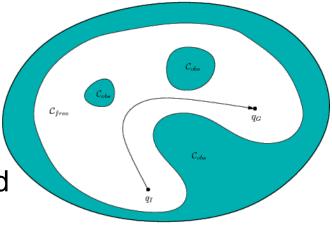
How to move a robot from A to B?

Motion planning (re-cap)

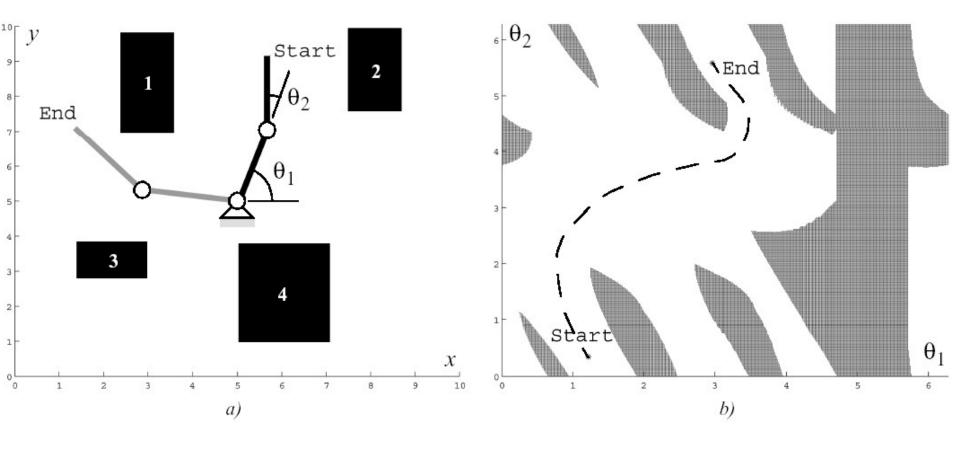
 Problem: Find actions that result in a path between two configuration space points while avoiding work space obstacles.



- Configuration (state) space: set of all transformations that can be applied to the robot.
- Work space (world): Space that robot occupies. Obstacles usually represented as Cartesian space regions.



Example: Workspace vs configuration space



Aalto University School of Electrical Engineering

Recap: Path vs motion planning

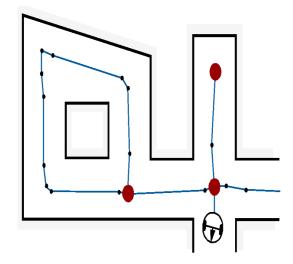
- Path planning: Find a collision free path in configuration space from start to end configuration.
- Motion planning: Find actions (control inputs), possibly with constraints on controls, duration, motion.
- Paths created by path planning can be turned into feasible trajectories by a trajectory planner.
- Trajectory planner determines time scale (velocity) over the path.

Discretization of configuration space

- Combinatorial vs sampling-based approaches
- Combinatorial: Divide free space and represent as graph.
 - Common in mobile robotics. Today a little bit of this.
- Sampling-based: Create a search tree incrementally by doing collision detection.
 - Can handle typically higher dimensions. Today mostly about this.

Continuous space planning by discretization

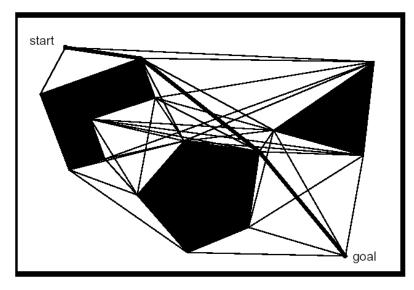
- After discretizing a continuous space, use discrete planning approaches such as Dijkstra, A*.
- Discretization builds a roadmap.
 - Roadmap graph: a set of routes in free space.
- How to discretize?
 - Does discretization affect solution in terms of feasibility/optimality?



Discretization approaches for polygonal obstacles

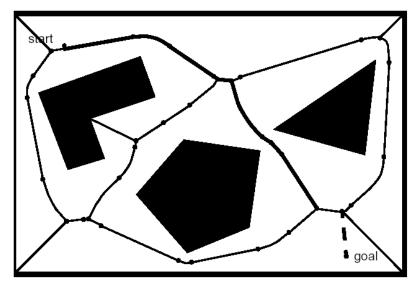
Visibility graph

Shortest path length



Voronoi diagram

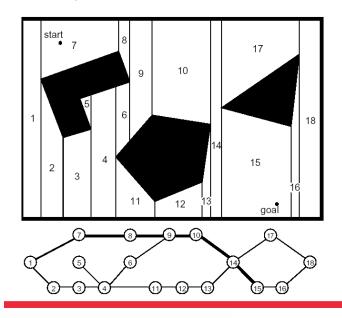
Maximal clearance



Discretization by cell decomposition

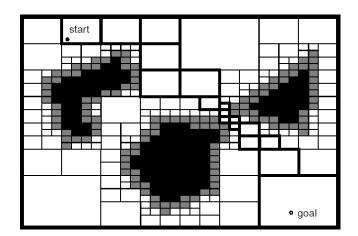
Exact cell decomposition

- Divide space into cells
- Determine which are adjacent



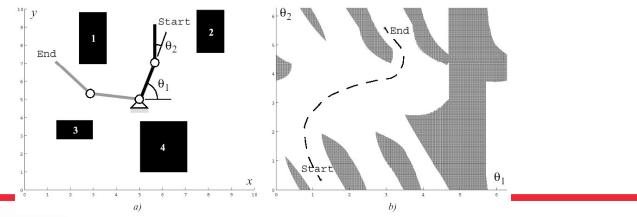
Approximate cell decomposition

- Divide space into cells of predefined shape
- Determine if each cell is free



Pros and cons of combinatorial approaches

- Complete approaches.
- Cannot handle well high-dimensional configuration spaces.
 - Combinatorial explosion (exponential number of states).
- Cannot handle easily non-linearities.
 - Obstacles cannot be easily represented with e.g. polygons.



Sampling based search

- Idea: Build search graph iteratively.
 - Draw random samples of configuration space.
 - Use collision detection to determine if a state is free.
- Two common approaches:

Offline

On-line

- Probabilistic roadmaps (Kavraki 1992)
- Rapidly exploring random trees (LaValle & Kuffner, 1999)

Probabilistic roadmaps

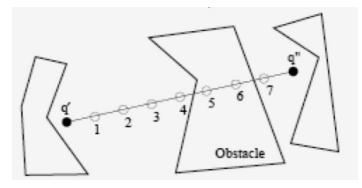
- Idea: Build search graph (roadmap) iteratively (off-line).
 - Draw random samples of configuration space.
 - Check if they are free, and add to search graph if they are.
 - Try to connect nearby nodes using *local planner*.
 - Continues until roadmap dense enough.
- Local planner checks if straight-line trajectory is free.
- On-line operation:
 - Find paths from start and end configurations to nearby roadmap nodes using local planner.
 - Use the roadmap for the rest of the path.

Sampling dense sequences

- Sampling has to be *dense* to allow each part of configuration space to be reachable from the roadmap.
- Denseness getting arbitrarily close to any point in space.
 - Can you give an example?
- Random sequences are often dense with probability 1.
- Random sampling of e.g. orientations requires care.
 - Is it better to sample in configuration or workspace?

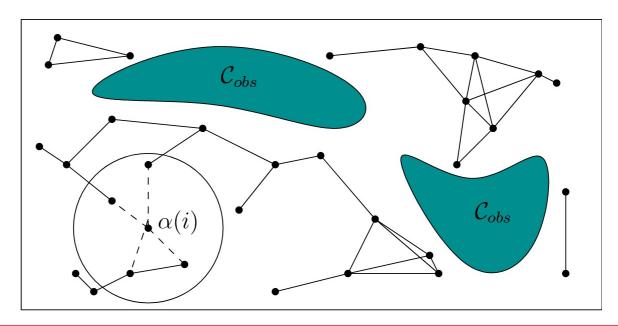
Local planner

- Check path between two points for collisions.
 - Number of points infinite.
- Local planner typically only checks discrete points along the path.
- What would be a good order to check the points?



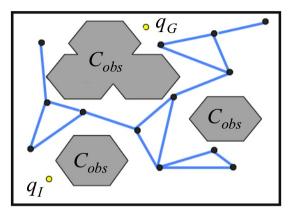
Connecting nodes

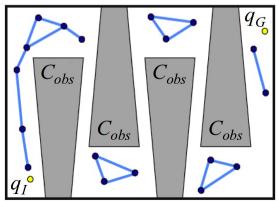
- Try to connect to points in a neighborhood using local planner.
 - K-nearest or inside a radius



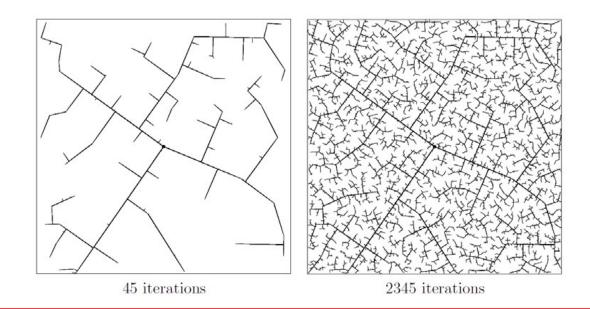
PRM pros and cons

- Pros:
 - Probabilistically complete.
 - Applicable to high-dimensional configuration space.
- Cons:
 - Does not work well for some problems, e.g. narrow passages.
- Many extensions of PRMs exist.





- Idea: Explore configuration incrementally from starting state.
 - Builds a tree rooted at starting state.



Aalto University School of Electrical Engineering

- Begin by choosing a random state.
 - Sample from bounded region around starting state.
 - Other sampling strategies also possible.

1 $G.init(q_0)$

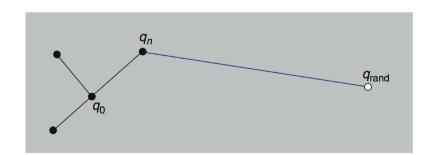
2 repeat

- $\mathbf{s} \quad | \quad q_{rand} \to \text{RANDOM}_{-}\text{CONFIG}(\mathcal{C}) \quad \cdot$
- 4 $q_{near} \leftarrow \text{NEAREST}(G, q_{rand})$
- 5 $G.add_edge(q_{near}, q_{rand})$
- 6 until condition

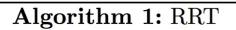
- Choose the nearest point in existing tree.
 - Choice of distance function affects.
 - Other similar strategies also possible.

Algorithm 1: RRT

- 1 $G.init(q_0)$
- 2 repeat
- $\mathbf{s} \quad | \quad q_{rand} \to \text{RANDOM}_{-}\text{CONFIG}(\mathcal{C})$
- 4 $q_{near} \leftarrow \text{NEAREST}(G, q_{rand})$
- 5 $G.add_edge(q_{near}, q_{rand})$
- 6 until condition



- Check for collision free path using local planner.
 - If it exists, connect nodes.
 - It not, connect to last state before obstacle.



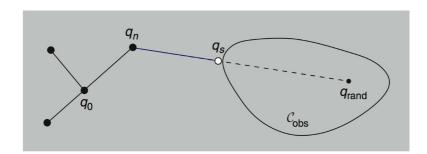
- 1 $G.init(q_0)$
- 2 repeat

$$\mathbf{s} \quad | \quad q_{rand} \to \text{RANDOM}_\text{CONFIG}(\mathcal{C})$$

 $\mathbf{4} \quad | \quad q_{near} \leftarrow \text{NEAREST}(G, q_{rand})$

5
$$G.add_edge(q_{near}, q_{rand})$$

6 until condition



 From time to time, choose goal state instead of the random, to check if a solution can be found.

Algorithm 1: RRT

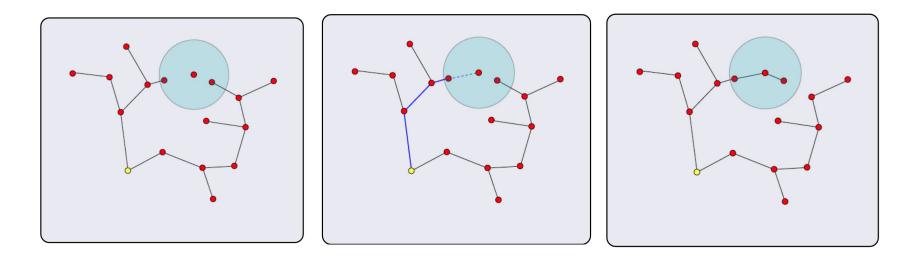
- 1 $G.init(q_0)$
- 2 repeat
- $\mathbf{s} \quad | \quad q_{rand} \to \text{RANDOM}_{-}\text{CONFIG}(\mathcal{C}) +$
- 4 $q_{near} \leftarrow \text{NEAREST}(G, q_{rand})$
- 5 $G.add_edge(q_{near}, q_{rand})$
- 6 until condition

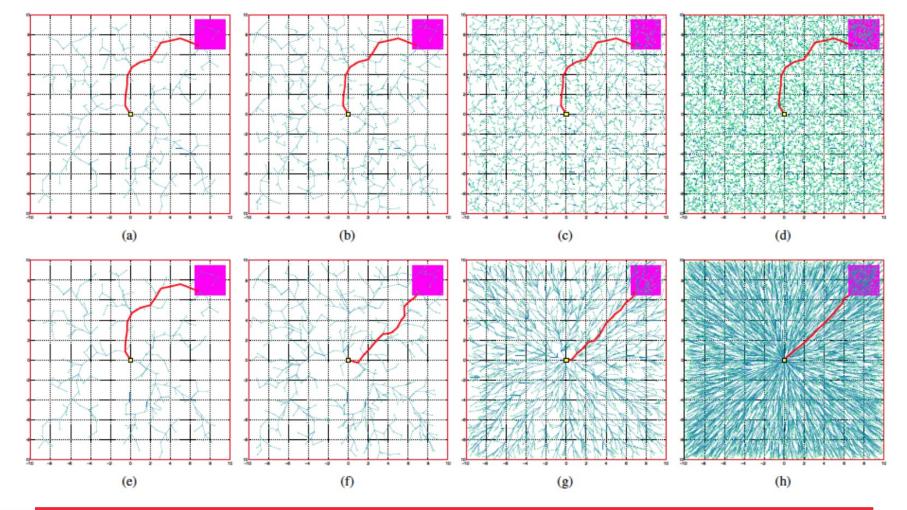
- Many extensions available.
 - For example, expand both from starting and goal states (BiRRT).
- Easy to implement.
- Probabilistically complete.
- Unknown rate of convergence.
- Widely used.
- Narrow corridors still problematic.

/	
	A
	/)

When a new node is added, tree can be locally rewired in small area around added node.

This will optimize path lengths.





Aalto University School of Electrical Engineering

Kinematic vs dynamic planning

- So far planning considered as finding a state-space trajectory, without considering constraints on dynamics.
- If inverse dynamics is available, it can be used to solve actions for a path.

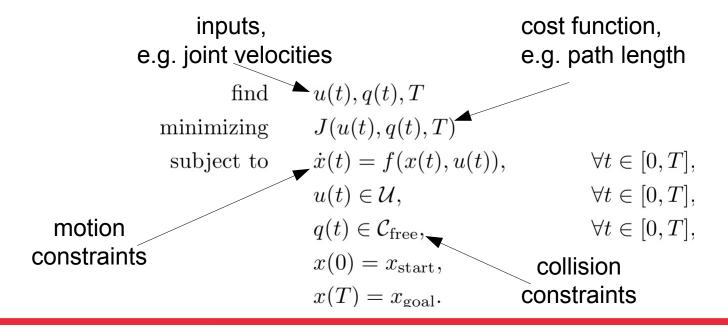
always exist?

- RRTs can be turned into *control-based* planners by substituting sampling of state by sampling of control.
- How to sample controls is a central question.
- This approach can be used for general continous space planning problems.

Aalto University School of Electrical Engineering

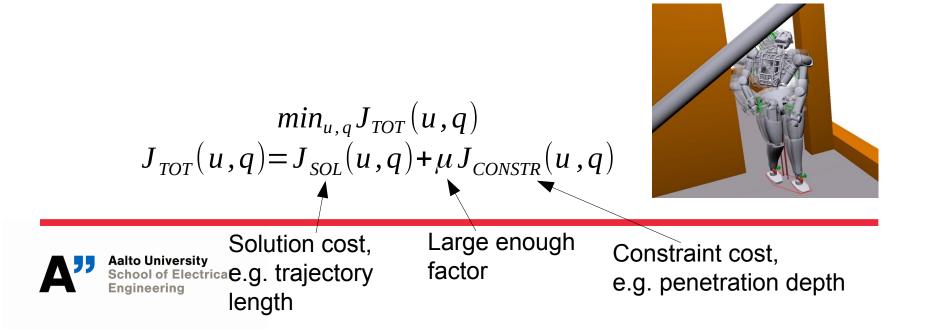
Motion planning as optimization

- Motion planning can be solved as nonlinear optimization
- **Optimal paths**, fast computation when good initial guess available, **possible local minima**.



Motion planning as optimization

- Methods e.g. TRAJOPT, CHOMP.
- Typical solution uses sequential convex optimization.
 - Iterate solving convex approximations of non-convex problem around current solution.
 - For example, handle constraints by turning into penalties.



- Open motion planning library (OMPL) encapsulates many motion planning algorithms.
- In robotics, ROS Movelt uses OMPL.
- https://vimeo.com/58709589
- https://www.youtube.com/watch?v=eUpvbOxrbwY

- Kinematic motion planning searches for admissible state space trajectories.
- Search in continuous state space requires discretization.
- In high dimensional state spaces stochastic discretization often applicable.
- Controls can be sampled instead of states to solve more general planning problems.

Next time: Perception for manipulation

- Readings:
 - Lynch & Park, Chapter 10

Note: Non-holonomic motion planning

- Robot is *underactuated*, if control space has fewer dimensions than configuration space.
 - E.g. a car.
- Robot is *nonholonomic*, if its motion is constrained by a non-integrable equation of form $f(\theta, \dot{\theta}) = 0$

- What's the constraint for a car?

