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Learning goals

• Understand the idea behind robot learning

• Understand the formulation of dynamic movement primitives: its
• benefits.

• usability.

• etc.
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Introduction:
Background, motivations and challenges

Robots are expected to assist us in our daily life tasks.
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How to structure?

How to find?
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Introduction:
Challenges of robot learning

Reinforcement Learning

Reward
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Introduction:
Challenges of robot learning

Learning from Human Demonstration



Introduction:
Learning from Demonstration

13.3.2021

15

Teleoperation uses a magnetic tracker attached 

to the object held by human demonstrator. 
Kinesthetic guiding uses the robot’s gravity 

compensation mode. 

Develop new robot behavior through intuitive teaching



Introduction:
Dynamical Systems as Trajectory Generators 

• Dynamical systems can be used to represent trajectories:

• Integrating the dynamical system results in a trajectory. ሶ𝑦 = 𝑓(𝑦)

• Mimics physical systems.

• Build-in Smoothness.

• Linear differential equations:

• well-defined behavior.

• But: limited class of movements.
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Introduction:
Dynamical Systems as Trajectory Generators 

• First order linear dynamical system:

ሶ𝒚 = 𝜶(𝒈 − 𝒚)

• Second order linear dynamical system:

ሷ𝒚 = 𝜶(𝜷 𝒈 − 𝒚 − ሶ𝒚)

• 𝒈 goal attractor

• 𝜶𝜷 spring constant (stiffness)

• 𝜶 damping
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Dynamic Movement Primitives (DMPs)

• Dynamic movement primitives (DMPs): are non-linear dynamic 

systems (Stefan Schaal’s lab, 2002, updated in 2013 by Auke Ijspeert), 

and then updated to include Cartesian space by Abu-Dakka et al. 2015, 

then updated to include Symmetric Positive Definite (SPD) matrices by 

Abu-Dakka et al. 2020.

• DMPs  provide a comprehensive framework for the effective imitation 

learning and control of robot movements.
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DMPs

• A DMP for a single degree of freedom trajectory y is defined by a set of 

nonlinear differential equations:

x state variable of the system that makes equation (1) a 

time-independent system.

z is a scaled velocity of y.

τ is the time constant.

αz and βz > 0 define the behavior of the 2nd order system.

τ > 0, αz = 4 βz and αx > 0, the convergence of the underlying dynamic system to a unique 

attractor point at y = g, z = 0 is ensured.
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𝜏 ሶ𝑧 = 𝛼𝑧 𝛽𝑧 𝑔 − 𝑦 − 𝑧 + 𝑓 𝑥 ,
𝜏 ሶ𝑦 = 𝑧,

𝜏 ሶ𝑥 = −𝛼𝑥𝑥,

Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., & Schaal, S. (2013). Dynamical movement primitives: Learning attractor models for motor behaviors. Neural Computations, 25(2), 328–373.



f(x) is:

• a linear combination of N nonlinear radial basis functions,

• encodes the desired additional acceleration profile,

• learnable function,

• enables the robot to follow any smooth trajectory from the 

initial position 𝑦0 to the final configuration 𝑔.

ℎ𝑖, 𝑐𝑖 and 𝑁 are width, centers and no. of Gaussian functions.

𝜔𝑖 weight parameters adopted to reconstruct the recorded 

motion.
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𝑓 𝑥 =
σ𝑖=1
𝑁 𝜔𝑖Ψ𝑖 𝑥

σ𝑖=1
𝑁 Ψ𝑖 𝑥

𝑥 𝑔 − 𝑦0 ,

Ψ𝑖 𝑥 = exp −ℎ𝑖 𝑥 − 𝑐𝑖
2 ,

Trajectory representation
DMPs:
Forcing  Term



• Given:

- A desired trajectory and its derivatives 𝑦, ሶ𝑦, ሷ𝑦 𝑡=1
𝑇

- A goal attractor 𝑔

- Constant positive parameters 𝛼𝑧, 𝛽𝑧, 𝛼𝑥
- Temporal Scaling 𝜏: Adjusted to movement duration.

• The weights w can be learned by linear regression:

- Compute desired values for each time step

𝑓𝑡
𝑑 = 𝜏2 ሷ𝑦𝑡 − 𝛼𝑧 ( 𝛽𝑧 𝑔 − 𝑦𝑡 − 𝜏 ሶ𝑦𝑡))

- Compute shape parameters by linear regression

𝐰 = 𝚽𝑇𝚽+ 𝜎2𝐈 −1𝚽𝑇𝐟𝑑

𝚽 is a matrix of Ψ𝑖
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DMPs:
Learning from Demonstration



DMPs
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DMPs

Robustness against perturbation: 

Phase stopping

13.3.2021

23

▪ The time evolution of phase can 
also be modulated online.

▪ If the robot cannot follow the 
desired motion, 𝛼𝑝𝑥 ത𝑦 − 𝑦
becomes large, which in turn 
makes the phase change x small.

𝜏 ሶ𝑥 = −
𝛼𝑥𝑥

1 + 𝛼𝑝𝑥 ത𝑦 − 𝑦

𝜏 ሶ𝑦 = 1 + 𝛼𝑝𝑦 ത𝑦 − 𝑦

Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., & Schaal, S. (2013). Dynamical movement primitives: Learning attractor models for motor behaviors. Neural Computations, 25(2), 328–373.



DMPs

Robustness against perturbation: 

• Obstacle Avoidance: Spatial coupling

𝜏 ሶ𝑧 = 𝛼𝑧 𝛽𝑧 𝑔 − 𝑦 − 𝑧 + 𝑓 𝑥 + 𝐶𝑡 ,
𝜏 ሶ𝑦 = 𝑧,

Spatial Coupling 𝐶𝑡 = 𝛾𝐑 ሶ𝐲𝜃 exp −𝛽𝜃

where

𝜃 = arccos
𝐨 − 𝐲 T ሶ𝐲

𝐨 − 𝐲 ሶ𝐲

𝐫 = 𝐨 − 𝐲 × ሶ𝐲.

𝜃 is the angle between ሶ𝐲 and 𝐨 − 𝐲 (Obstacle position – Current position)
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[1] Hoffmann, H., et al (2009). Biologically-inspired dynamical systems for movement generation: Automatic real-time goal adaptation and obstacle avoidance. In International Conference on 
Robotics and Automation (pp. 2587–2592). Piscataway, NJ.
[2] Ijspeert, A. J., et al (2013). Dynamical movement primitives: Learning attractor models for motor behaviors. Neural Computations, 25(2), 328–373.



DMPs

Goal switching: 

• Adaptation to new goal attractor 𝑔 𝜏 ሶ𝑔 = 𝛼𝑔(𝑔𝑛𝑒𝑤 − 𝑔)
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DMPs

Movement sequencing
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Geometry-aware DMPs:
Non-Euclidean Data
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Geometry-aware DMPs:
Riemannian Manifolds: Definition
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“A smooth topological space that 

locally resembles a Euclidean 

space (e.g. ℝ𝑑, Sym𝑑).”



Geometry-aware DMPs:
Riemannian Manifolds: Tangent space
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The metric in the tangent space 

is flat, which allows the use of 

classical arithmetic tools.

To operate on tangent spaces, a 

mapping system is required to 

switch between 𝓣𝑔𝓜 and 𝓜.



Geometry-aware DMPs:
Riemannian Manifolds: Exponential map
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Geometry-aware DMPs:
Riemannian Manifolds: Logarithmic map
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Geometry-aware DMPs:
Riemannian Manifolds

Re-interpretation of basic standard operations in a Riemannian manifold

X. Pennec, P. Fillard, and N. Ayache, “A riemannian framework for tensor computing,” International Journal of Computer Vision, vol. 66, no. 1, pp. 41–66, 2006.

Euclidean space Riemannian manifold

Subtraction 𝐚𝐛 = 𝐛 − 𝐚 𝐀𝐁 = Log𝐀(𝐁)

Addition 𝐛 = 𝐚 + 𝐚𝐛 𝐁 = Exp𝐀(𝐀𝐁)

Distance dist(𝐚, 𝐛) = 𝐛 − 𝐚 dist(𝐀, 𝐁) = 𝐀𝐁
𝐀

Interpolation 𝐚 𝑡 = 𝐚1 + 𝑡𝐚1𝐚2 𝐀(𝑡) = Exp𝐀1(𝑡𝐀1𝐀2)



Geometry-aware DMPs:
Sphere manifold 𝐒𝑑: Unit quaternion 𝐒3

• Cartesian Space DMPs: in basic DMP equations, direct integration of unit 

quaternions (used to represent 3-D orientation) does not ensure that the normal of 

quaternions stays equal 1.
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𝜏 ሶ𝛈 = 𝛼𝑧 𝛽𝑧2 log 𝐠𝑜 ∗ ഥ𝐪 − 𝛈 + 𝑓𝑜 𝑥 ,

𝜏 ሶ𝐪 =
1

2
𝛈 ∗ 𝐪,

𝜏 ሶ𝑥 = −𝛼𝑥𝑥,

𝐠𝑜 ∈ 𝐒3 denotes the goal orientation. 

ഥ𝐪 = 𝜐 + 𝐮 = 𝜐 − 𝐮 denotes the 

quaternion conjugation. 
𝐪1 ∗ 𝐪2 = 𝜐1 + 𝐮1 ∗ 𝜐2 + 𝐮2
= 𝜐1𝜐2 − 𝐮1

T𝐮2 + 𝜐1𝐮2 + 𝜐2𝐮1 + 𝐮1 × 𝐮2
𝛈 ∈ ℝ3 is treated as quaternion with zero 

scalar.

The quaternion logarithm log: 𝐒3 → ℝ3, log 𝐪 = log 𝜐 + 𝐮 = ቐ
arccos 𝜐

𝐮

𝐮
, 𝐮 ≠ 0

0, 0, 0 T, otherwise

Abu-Dakka, F. J., Nemec, B., Jørgensen, J. A., Savarimuthu, T. R., Krüger, N., & Ude, A. (2015). Adaptation of manipulation skills in physical contact with the environment to reference force 
profiles. Autonomous Robots, 39(2), 199-217.



• Quaternion logarithm can be used to specify the distance metric on the space of unit quaternion 

𝐒3 (Ude 1999)

• Quaternion angular velocity: rotates quaternion 𝐪 into 𝐠𝑜 within unit sampling time. Thus only 

the application of the logarithmic map provides a proper mapping of the quaternion difference 

𝐠𝑜 ∗ 𝐪 onto the angular velocity.

• The logarithmic map becomes one-to-one and continuously differentiable if we limit its domain 

to 𝐒3/(−1 + 0, 0, 0 T. Thus, we can define its inverse, i.e. the exponential map ℝ3 → 𝐒3, as
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[1] Ude, A. (1999). Filtering in a unit quaternion space for model-based object tracking. Robotics and Autonomous Systems, 28(2–3), 163–172.
[2] Abu-Dakka, F. J. et al. (2015). Adaptation of manipulation skills in physical contact with the environment to reference force profiles. Autonomous Robots, 39(2), 199-217.

d(𝐪1, 𝐪2) = ቊ
log(𝐪1 ∗ ഥ𝐪2) , 𝐪1 ∗ ഥ𝐪2 ≠ −1 + 0, 0, 0 T

𝜋, otherwise

𝛚 = 2 log 𝐠𝑜 − ഥ𝐪

exp(𝐫) = ൞
cos 𝐫 + sin 𝐫

𝐫

𝐫
, 𝐫 ≠ 0

1 + 0, 0, 0 T, otherwise

Geometry-aware DMPs:
Sphere manifold 𝐒𝑑: Unit quaternion 𝐒3



• Phase Stopping:

- In the context of Cartesian space.

𝜏 ሶ𝐪 =
1

2
𝛈 + 𝛼𝑝𝑞2 log 𝐪 − ഥ𝐪 ∗ 𝐪

- In the context of force feed back.

𝜏 ሶ𝐪 =
1

2
𝛈 − 𝛼𝑝𝑞𝐊𝑞𝐞𝑞(𝒙) ∗ 𝐪

13.3.2021

35

Abu-Dakka, F. J., Nemec, B., Jørgensen, J. A., Savarimuthu, T. R., Krüger, N., & Ude, A. (2015). Adaptation of manipulation skills in physical contact with the environment to reference force 
profiles. Autonomous Robots, 39(2), 199-217.

Geometry-aware DMPs:
Sphere manifold 𝐒𝑑: Unit quaternion 𝐒3
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Original formulation

[1] Ales Ude, Bojan Nemec, Tadej Petric, and Jun Morimoto (2014). Orientation in Cartesian Space Dynamic Movement Primitives. ICRA, 2997–3004, Hong Kong, China.

𝜏 ሶ𝑧 = 𝛼𝑧 𝛽𝑧 𝑔 − 𝑦 − 𝑧 + 𝑓 𝑥 ,
𝜏 ሶ𝑦 = 𝑧,

𝜏 ሶ𝛈 = 𝛼𝑧 𝛽𝑧 log 𝐑𝑔𝐑
T − 𝛈 + 𝐟𝑜 𝑥

𝜏 ሶ𝐑 = 𝛈 ×𝐑

𝐟𝑜 𝑥 =
σ𝑖=1
𝑁 𝐰𝑖

𝑜Ψ𝑖(𝑥𝑗)

σ𝑖=1
𝑁 Ψ𝑖(𝑥𝑗)

𝑥𝑗 =

𝐃𝑜
−1(𝜏 ሶ𝛈𝑗 + 𝛼𝑧𝛈𝑗 − 𝛼𝑧𝛽𝑧(log(𝐑𝑔𝐑𝑗

T)))

𝐑 𝑡 + Δ𝑡 = exp Δ𝑡
𝛈 ×

𝜏
𝐑(𝑡)

Geometry-aware DMPs:
Special orthogonal manifold 𝐒𝐎(𝑑): Rotation matrix 𝐒𝐎(3)



Applications:
Peg-in-Hole

• A classical assembly problem.

• Requires position and force control

• Solutions:

- Hard-coding.

- Learning.
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Applications:
Peg-in-Hole: Learning procedure with DMPs

• Data Acquisition.

• Encode data using Cartesian DMPs for orientation, and original DMPs 

for position.

• Adapt to a new situation and overcome errors coming from inaccurate 

pose estimation and other uncertainties.

• Integrate Iterative Learning Control to help in a successful peg insertion 

iteratively.

• Triger phase stopping mechanism to slow down the robot whenever it 

sense high forces.
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Applications:
Peg-in-Hole: Learning procedure with DMPs

• Slowing Down

- The proposed controller tracks simultaneously the desired position/orientations and 
forces/torques.

- Force/torque adaptations requires low gains for stable and robust operation.

- Thus, force adaptation is usually slow.

- Slowing down the trajectory execution using DMP slow-down feedback, whenever the 
force/torque error is above the predefined limit.
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Applications:
Peg-in-Hole: Learning procedure with DMPs

• Control scheme
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Abu-Dakka, F. J., Nemec, B., Jørgensen, J. A., Savarimuthu, T. R., Krüger, N., & Ude, A. (2015). Adaptation of manipulation skills in physical contact with the environment to reference force 
profiles. Autonomous Robots, 39(2), 199-217.
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Peg-in-Hole: Learning procedure with DMPs
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Applications:
Peg-in-Hole: Learning procedure with DMPs

13.3.2021

42



Summary

• Robot learning is essential in order to make robots to execute new tasks and avoid

hard-coding.

• Learning from demonstration provides a friendly way to teach robots from human.

• Dynamic movement primitive is one of the imitation learning techniques that can be

used to teach robots manipulation skills from single demonstration.

• Peg-in-Hole problem: application example.

Readings:

• Saveriano, Matteo, Fares J. Abu-Dakka, Aljaz Kramberger, and Luka Peternel.

"Dynamic Movement Primitives in Robotics: A Tutorial Survey" arXiv preprint

arXiv:2102.03861 (2021).
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