Advanced probabilistic methods Lecture 3: Multivariate Gaussian, Bayesian linear models

Pekka Marttinen

Aalto University

January, 2021

Pekka Marttinen (Aalto University)

- Gaussian distribution
 - Bayesian parameter learning
- Multivariate Gaussian distribution
 - Characterization
 - Useful identities
- Bayesian Linear Parameter Models (LPMs)
 - Posterior computation (given fixed hyperparameters)
- Ch. 8 & 18 (until the end of Section 18.1.1) in Barber's book

Recall from lecture 1

- Tools for probabilistic modeling
 - **Models**: Bayesian networks, sparse Bayesian linear regression, Gaussian mixture models, latent linear models
 - Methods for inference: maximum likelihood, maximum a posteriori (MAP), analytical, Laplace approximation, expectation maximization (EM), Variational Bayes (VB), stochastic variational inference (SVI)
 - Ways to select between models

- A model specifies a probability distribution for a random variable Y, and it is often affected by some parameter θ. The model can be denoted as p(y|θ).
- Fitting the model (i.e. inference) corresponds to learning the value (or the distribution) of θ, after some data y have been observed.

Prior, Likelihood, Posterior

 Bayes' rule tells us how to update our prior beliefs about variable θ in light of the data y to a posterior belief:

The evidence is also called the marginal likelihood.

- $p(y|\theta)$ is the probability that the model generates the observed data y when using parameter θ
 - $L(\theta) \equiv p(y|\theta)$, with y held fixed, is called the *likelihood*
 - $f(y) \equiv p(y|\theta)$, with θ held fixed, is called the *observation model*
- "*Methods for inference*" = Bayes' rule + some algorithm to do the actual computations (on this course)

• The *Maximum A Posteriori (MAP)* parameter value, which maximizes the posterior

$$heta_* = rg\max_{ heta} p(heta|y)$$

• The Maximum likelihood assignment (ML)

$$heta_* = rg\max_{ heta} p(y| heta)$$

• The full posterior distribution $p(\theta|y)$ tells also of the uncertainty about the value of θ .

Gaussian distribution

- $X \sim N(\mu, \sigma^2)$
- Parameters: μ : mean, σ^2 : variance
- Inverse of the variance, $\lambda=1/\sigma^2$, is called the precision
- Standard deviation σ
- 95% credible interval equals approximately $[\mu-2\sigma,\mu+2\sigma]$

PDF:

$$N(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

Pekka Marttinen (Aalto University)

Bayesian estimation of the mean of a Gaussian (1/2)

- Suppose we have observations $x = (x_1, ..., x_n)$ from $N(\mu, \sigma^2)$, where σ^2 is known.
- To learn μ , we specify a prior

$$\mu \sim N(\mu_0, au_0^2)$$

Posterior

$$p(\mu|x) = \frac{p(x|\mu)p(\mu)}{p(x)} \propto p(\mu)p(x|\mu)$$

= $\frac{1}{\sqrt{2\pi\tau_0}} e^{-\frac{1}{2\tau_0^2}(\mu-\mu_0)^2} \times \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^2}(x_i-\mu)^2}$
 $\propto e^{-\frac{1}{2\tau_0^2}(\mu-\mu_0)-\frac{1}{2\sigma^2}\sum_i(x_i-\mu)^2}$
= ... (details in BDA course)

Bayesian estimation of the mean of a Gaussian (2/2)

Posterior

$$p(\mu|x) \propto e^{-\frac{1}{2\tau_n^2}(\mu-\mu_n)^2}$$
$$\propto N(\mu|\mu_n, \tau_n^2)$$

where

$$\mu_n = \frac{\frac{1}{\tau_0^2}\mu_0 + \frac{n}{\sigma^2}\overline{x}}{\frac{n}{\sigma^2} + \frac{1}{\tau_0^2}} \quad \text{and} \quad \frac{1}{\tau_n^2} = \frac{n}{\sigma^2} + \frac{1}{\tau_0^2}$$

• Posterior precision $1/\tau_n^2$: sum of prior precision $1/\tau_0^2$ and data precision n/σ^2

 Posterior mean μ_n: precision weighted average of prior mean μ₀ and data mean x̄. • In the previous example

Prior:
$$\mu \sim N(\mu_0, \tau_0^2)$$

Posterior: $\mu \sim N(\mu_n, \tau_n^2)$.

If the prior and posterior belong to the same family of distributions, we say that the prior is conjugate to the likelihood used.

• For example, normal prior $\mu \sim N(\mu_0, \tau_0^2)$ is conjugate to the normal likelihood $N(x|\mu, \sigma^2)$.

• Conjugacy is useful, because it makes computations easy.

• With conjugate prior, the posterior is available in a closed form

 $p(\boldsymbol{\theta}|\boldsymbol{x}) \propto p(\boldsymbol{x}|\boldsymbol{\theta})p(\boldsymbol{\theta})$

- Drop all terms not depending on $\boldsymbol{\theta}$
- Recognize the result as a density function belonging to the same family of distributions as the prior $p(\theta)$, but with different parameters.
- Examples (likelihood conjugate prior):
 - Likelihood for normal mean Normal prior
 - Likelihood for normal variance Inverse-Gamma prior
 - Bernoulli Beta
 - Binomial Beta
 - Exponential Gamma
 - Poisson Gamma

- Suppose we have observations $x = (x_1, ..., x_n)$ from $N(\mu, \lambda^{-1})$, where both the mean μ and the precision λ are unknown.
- The conjugate prior distribution is the normal-gamma distribution

$$p(\mu, \lambda | \mu_0, \beta, a, b) = N(\mu | \mu_0, (\beta \lambda)^{-1}) \operatorname{Gam}(\lambda | a, b)$$

 $\equiv \operatorname{Normal-Gamma}(\mu, \lambda | \mu_0, \beta, a, b)$

Note the dependency of the prior of μ on the value of λ .

Gaussian distribution, unknown mean and precision (2/2)

• The conjugate prior distribution is the normal-gamma distribution $p(\mu, \lambda | \mu_0, \beta, a, b) =$ Normal-Gamma $(\mu, \lambda | \mu_0, \beta, a, b)$

Posterior

$$p(\mu, \lambda | x) = \mathsf{Normal-Gamma}(\mu, \lambda | \mu_n, \beta_n, a_n, b_n),$$

with

$$\mu_n = \frac{\beta \mu_0 + n\overline{x}}{\beta + n}$$

$$\beta_n = \beta + n$$

$$a_n = a + \frac{n}{2}$$

$$b_n = b + \frac{1}{2} \left(ns + \frac{\beta n(\overline{x} - \mu_0)^2}{\beta + n} \right)$$

Gaussian distribution, unknown mean and precision, example (1/2)

- Simulate samples from $N(\mu = 2, \sigma^2 = 0.25)$
 - precision $\lambda = 4$
- Try to learn μ and λ
- Specify prior

$$m{
ho}(\mu,\lambda|\mu_0,eta,m{a},m{b})=\mathsf{Normal-Gamma}(\mu,\lambda|\mu_0,m{eta},m{a},m{b})$$

with

$$\mu_0=$$
 0, $\beta=0.001,$ $a=0.01,$ $b=0.01$

• See: normal_example.m

Gaussian distribution, unknown mean and precision, example (2/2)

• When μ and λ have distribution

Normal-Gamma $(\mu, \lambda | \mu_n, \beta_n, a_n, b_n) = N(\mu | \mu_n, (\beta_n \lambda)^{-1})$ Gam $(\lambda | a_n, b_n)$,

marginal distribution of λ can be plotted using the PDF of ${\rm Gam}(\lambda|\mathbf{a}_n,\mathbf{b}_n)$

- To plot the marginal distribution of μ , we need to take the dependence on λ into account.
 - we compute the marginal distribution of μ by averaging over $N(\mu|\mu_n, (\beta_n\lambda_i)^{-1})$, for multiple λ_i simulated from $Gam(\lambda|a_n, b_n)$
 - (could also be done analytically...)

• If $p(x|\theta_t)$ is the true data generating mechanism, and A is a neighborhood of θ_t , then

$$p(\theta \in A|x) \stackrel{n \to \infty}{\to} 1.$$

- The posterior distribution concentrates around the true value (if such a value exists!). See the *normal_example.m*
- It follows that

$$\overline{\theta}_{MAP} \stackrel{n \to \infty}{\to} \theta_t$$
 and $\overline{\theta}_{ML} \stackrel{n \to \infty}{\to} \theta_t$

$$N_D(x|\mu, \Sigma) \equiv (2\pi)^{-\frac{D}{2}} |\Sigma|^{-\frac{1}{2}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$$

• D: dimension, μ : mean, Σ : covariance matrix. With D = 2:

$$\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{bmatrix}$$

- σ₁₂ = σ₂₁: covariance between x₁ and x₂. (tells direction of dependency)
- $\rho_{12} = \sigma_{12}/(\sigma_1\sigma_2)$:correlation between x_1 and x_2 . (direction and strength)

Multivariate Gaussian - characterization (1/2)

Eigendecomposition

$$\Sigma = E \Lambda E^T$$
,

where $E^T E = I$ and $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_D)$.

Now the transformation

$$y = \Lambda^{-\frac{1}{2}} E^T (x - \mu)$$

can be shown to have the distribution $N_D(0, I)$ (product of D independent standard Gaussians)

Pekka Marttinen (Aalto University)

Multivariate Gaussian - characterization (2/2)

- Thus, $x = E\Lambda^{\frac{1}{2}}y + \mu$ with distribution $N_D(\mu, \Sigma)$ is obtained from standard independent Gaussians y by
 - scaling by the square roots of eigenvalues
 - rotating by the eigenvectors
 - shifting by adding the mean

• Let $z \sim N(\mu, \Sigma)$ and consider partitioning it as:

$$z = \left(\begin{array}{c} x \\ y \end{array}\right)$$

with

$$\mu = \left(egin{array}{c} \mu_x \ \mu_y \end{array}
ight)$$
 and $\Sigma = \left(egin{array}{cc} \Sigma_{xx} & \Sigma_{xy} \ \Sigma_{yx} & \Sigma_{yy} \end{array}
ight).$

Pekka Marttinen (Aalto University)

Marginalization and conditioning (2/2)

• Then

$$\begin{split} p(x) &\sim \mathcal{N}(\mu_x, \Sigma_{xx}) \quad \text{(marginalization)} \\ p(x|y) &= \mathcal{N}(\mu_x + \Sigma_{xy} \Sigma_{yy}^{-1} (y - \mu_y), \Sigma_{xx} - \Sigma_{xy} \Sigma_{yy}^{-1} \Sigma_{yx}) \quad \text{(conditioning} \\ \Longrightarrow \text{Marginals and conditionals of M-V Gaussians are still M-V} \end{split}$$

Gaussian.

Pekka Marttinen (Aalto University)

January, 2021 21 / 36

• Linear transformation: if

$$y = Mx + \eta$$
,

where $x \sim \textit{N}(\mu_x, \Sigma_x)$ and $\eta \sim \textit{N}(\mu, \Sigma)$,then

$$p(y) = N(y|M\mu_x + \mu, M\Sigma_x M^T + \Sigma)$$

• Completing the square:

$$\frac{1}{2}x^{T}Ax - b^{T}x = \frac{1}{2}(x - A^{-1}b)^{T}A(x - A^{-1}b) - \frac{1}{2}b^{T}A^{-1}b$$

From which one can derive, for example

$$\int \exp(-\frac{1}{2}x^{\mathsf{T}}Ax + b^{\mathsf{T}}x)dx = \sqrt{\det(2\pi A^{-1})}\exp(\frac{1}{2}b^{\mathsf{T}}A^{-1}b)$$

Let x = (x₁,..., x_n) be from N(μ, Σ) with unknown μ and Σ.
 Log-likelihood, assuming data are *i.i.d.*:

$$\begin{split} L(\mu,\Sigma) &= \sum_{i=1}^{N} \log p(x_i | \mu, \Sigma) \\ &= -\frac{1}{2} \sum_{i=1}^{N} (x_i - \mu)^T \Sigma^{-1} (x_i - \mu) - \frac{N}{2} \log \det(2\pi\Sigma) \end{split}$$

Multivariate Gaussian - ML fitting

• Differentiate $L(\mu, \Sigma)$ w.r.t. the vector μ :

$$\nabla_{\mu} L(\mu, \Sigma) = \sum_{i=1}^{N} \Sigma^{-1}(x_i - \mu)$$

Equating to zero gives

$$\sum_{i=1}^N \Sigma^{-1} x_i = N \Sigma^{-1} \mu.$$

Thus we get

$$\widehat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

• Similarly one can derive:

$$\widehat{\Sigma} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x}) (x_i - \overline{x})^T$$

Pekka Marttinen (Aalto University)

• Gaussian-Wishart is the conjugate prior, when $X_i \sim N(\mu, \Lambda)$ and both mean μ and precision Λ are unknown:

$$p(\mu, \Lambda | \mu_0, \beta, W, \nu) = N(\mu | \mu_0, (\beta \Lambda)^{-1}) \mathcal{W}(\Lambda | W, \nu)$$

If X_i are scalar, this is equivalent to the Gaussian-Gamma distribution.
Posterior

$$p(\mu, \Lambda | x) = N(\mu | \mu_n, (\beta_n \Lambda)^{-1}) \mathcal{W}(\Lambda | W_n, \nu_n)$$

• Wishart distribution is a distribution for nonnegative-definite matrix-valued random variables

 $\Lambda \sim \mathcal{W}(\Lambda | \mathcal{W}, \nu)$

$$E(\Lambda) =
u W$$

 $\mathsf{Var}(\Lambda_{ij}) = n(w_{ij}^2 + w_{ii}w_{jj})$

• Further: exercises...

Linear models with Gaussian noise

• Data
$$\mathcal{D} = \{(x_i, y_i), i = 1, ..., N\}$$

- **x**_i: the input
- *y_i*: the output
- Model:

$$y = \underbrace{f(\mathbf{w}, \mathbf{x})}_{\text{clean output}} + \underbrace{\eta}_{\text{noise}}, \quad \eta \sim N(0, \beta^{-1})$$

• In the simplest case

$$f(\mathbf{w}, \mathbf{x}) = \mathbf{w}^T \mathbf{x}$$
$$= w_1 x_1 + \ldots + w_D x_D$$

• The parameters w_i are also called the weights

- A prior distribution $p(\mathbf{w}|\alpha)$ is placed on the weights \mathbf{w} .
- The posterior distribution $p(\mathbf{w}|\mathcal{D}, \Gamma)$ can be computed, and reflects the uncertainty of the parameters.

• A Gaussian prior distribution may placed on w:

$$p(\mathbf{w}|\alpha) = N(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$$
$$= \prod_{i=1}^{D} N(w_i|\mathbf{0}, \alpha^{-1}) = \left(\frac{\alpha}{2\pi}\right)^{\frac{D}{2}} e^{-\frac{\alpha}{2}\sum_i w_i^2}$$

Posterior

$$\log p(\mathbf{w}|\Gamma, \mathcal{D}) = -\frac{\beta}{2} \sum_{i=1}^{N} \left[y_i - \mathbf{w}^T \mathbf{x}_i \right]^2 - \frac{\alpha}{2} \mathbf{w}^T \mathbf{w} + \text{const}$$

Pekka Marttinen (Aalto University)

э

- *α*: precision of the regression weights
 - determines the amount of regularization
 - $\bullet~$ large precision \rightarrow small variance \rightarrow weights are close to zero
- β : *precision* of the noise
- $\Gamma = \{\alpha, \beta\}$ are called the **hyperparameters** (in the course book...)

Posterior distribution

Posterior distribution is obtained by completing the square (left as an exercise):

$$p(\mathbf{w}|\Gamma, \mathcal{D}) = N(\mathbf{w}|\mathbf{m}, S)$$

where

$$S = \left(\alpha I + \beta \sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{x}_{i}^{T}\right)^{-1}, \qquad \mathbf{m} = \beta S \sum_{i=1}^{N} y_{i} \mathbf{x}_{i}$$

Mean prediction

$$\widetilde{y} = \int \mathbf{w}^T \mathbf{x} imes p(\mathbf{w} | \Gamma, \mathcal{D}) d\mathbf{w} = \mathbf{m}^T \mathbf{x}$$

- Setup: simulate $y = \mathbf{w}_{true}^T \mathbf{x} + \epsilon$, where $\epsilon \sim N(0, \beta^{-1})$ and $\beta = 1$
- The goal is to investigate how hyperparameter *α* affects the posterior distribution of the parameters w

Example, impact of hyperparameters (2/3)

• Too large α , $Var(y - \widetilde{y}) = 1.54$ (Original Var(y) = 1.75)

• Too small α , $Var(y - \tilde{y}) = 2.48$

Pekka Marttinen (Aalto University)

Advanced probabilistic methods

Example, impact of hyperparameters (3/3)

- About good α , $Var(y \tilde{y}) = 1.46$
- A compromise between bias and variance

• Other sparse priors (e.g., Laplace, horse-shoe, spike-and-slab):

- Analysis of \sim 1,000,000 genetic polymorphisms in \sim 50,000 genomic regions (Peltola et al., 2012, *PLoS ONE*).
- Spike-and-slab prior on regression weights

- Bayesian learning of the Gaussian distribution using conjugate priors
- Multivariate Gaussian
 - Characterization
 - Marginal & conditional distributions
 - Linear transformation & completing the square
- By placing a Gaussian prior on the parameters of linear regression, the posterior is also Gaussian.
- Meaning and impact of hyperparameters in Bayesian linear regression.