Advanced probabilistic methods

Lecture 3: Multivariate Gaussian, Bayesian linear models

Pekka Marttinen

Aalto University
January, 2021

Lecture 3 overview

- Gaussian distribution
- Bayesian parameter learning
- Multivariate Gaussian distribution
- Characterization
- Useful identities
- Bayesian Linear Parameter Models (LPMs)
- Posterior computation (given fixed hyperparameters)
- Ch. 8 \& 18 (until the end of Section 18.1.1) in Barber's book

Recall from lecture 1

- Tools for probabilistic modeling
- Models: Bayesian networks, sparse Bayesian linear regression, Gaussian mixture models, latent linear models
- Methods for inference: maximum likelihood, maximum a posteriori (MAP), analytical, Laplace approximation, expectation maximization (EM), Variational Bayes (VB), stochastic variational inference (SVI)
- Ways to select between models

Box's loop (Blei, 2014)

What is a model?

- A model specifies a probability distribution for a random variable Y, and it is often affected by some parameter θ. The model can be denoted as $p(y \mid \theta)$.
- Fitting the model (i.e. inference) corresponds to learning the value (or the distribution) of θ, after some data y have been observed.

Prior, Likelihood, Posterior

- Bayes' rule tells us how to update our prior beliefs about variable θ in light of the data y to a posterior belief:

$$
\underbrace{p(\theta \mid y)}_{\text {posterior }}=\frac{\underbrace{p(y \mid \theta)}_{\text {likelihood prior }} \underbrace{p(\theta)}_{\text {evidence }}}{\underbrace{p(y)}}
$$

The evidence is also called the marginal likelihood.

- $p(y \mid \theta)$ is the probability that the model generates the observed data y when using parameter θ
- $L(\theta) \equiv p(y \mid \theta)$, with y held fixed, is called the likelihood
- $f(y) \equiv p(y \mid \theta)$, with θ held fixed, is called the observation model
- "Methods for inference" $=$ Bayes' rule + some algorithm to do the actual computations (on this course)

Point estimates for parameters

- The Maximum A Posteriori (MAP) parameter value, which maximizes the posterior

$$
\theta_{*}=\arg \max _{\theta} p(\theta \mid y)
$$

- The Maximum likelihood assignment (ML)

$$
\theta_{*}=\arg \max _{\theta} p(y \mid \theta)
$$

- The full posterior distribution $p(\theta \mid y)$ tells also of the uncertainty about the value of θ.

Gaussian distribution

- $X \sim N\left(\mu, \sigma^{2}\right)$
- Parameters: μ : mean, σ^{2} : variance
- Inverse of the variance, $\lambda=1 / \sigma^{2}$, is called the precision
- Standard deviation σ
- 95\% credible interval equals approximately $[\mu-2 \sigma, \mu+2 \sigma]$
- PDF:

$$
N\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}
$$

Gaussian (or normal) distribution (wikip.)

Bayesian estimation of the mean of a Gaussian (1/2)

- Suppose we have observations $x=\left(x_{1}, \ldots, x_{n}\right)$ from $N\left(\mu, \sigma^{2}\right)$, where σ^{2} is known.
- To learn μ, we specify a prior

$$
\mu \sim N\left(\mu_{0}, \tau_{0}^{2}\right)
$$

- Posterior

$$
\begin{aligned}
p(\mu \mid x) & =\frac{p(x \mid \mu) p(\mu)}{p(x)} \propto p(\mu) p(x \mid \mu) \\
& =\frac{1}{\sqrt{2 \pi} \tau_{0}} e^{-\frac{1}{2 \tau_{0}^{2}}\left(\mu-\mu_{0}\right)^{2}} \times \prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2 \sigma^{2}}\left(x_{i}-\mu\right)^{2}} \\
& \propto e^{-\frac{1}{2 \tau_{0}^{2}}\left(\mu-\mu_{0}\right)-\frac{1}{2 \sigma^{2}} \sum_{i}\left(x_{i}-\mu\right)^{2}} \\
& =\ldots(\text { details in BDA course })
\end{aligned}
$$

Bayesian estimation of the mean of a Gaussian (2/2)

- Posterior

$$
\begin{aligned}
p(\mu \mid x) & \propto e^{-\frac{1}{2 \tau_{n}^{2}}\left(\mu-\mu_{n}\right)^{2}} \\
& \propto N\left(\mu \mid \mu_{n}, \tau_{n}^{2}\right)
\end{aligned}
$$

where

$$
\mu_{n}=\frac{\frac{1}{\tau_{0}^{2}} \mu_{0}+\frac{n}{\sigma^{2}} \bar{x}}{\frac{n}{\sigma^{2}}+\frac{1}{\tau_{0}^{2}}} \quad \text { and } \quad \frac{1}{\tau_{n}^{2}}=\frac{n}{\sigma^{2}}+\frac{1}{\tau_{0}^{2}}
$$

- Posterior precision $1 / \tau_{n}^{2}$: sum of prior precision $1 / \tau_{0}^{2}$ and data precision n / σ^{2}
- Posterior mean μ_{n} : precision weighted average of prior mean μ_{0} and data mean \bar{x}.

Conjugate prior distributions (1/2)

- In the previous example

$$
\begin{array}{r}
\text { Prior: } \mu \sim N\left(\mu_{0}, \tau_{0}^{2}\right) \\
\text { Posterior: } \mu \sim N\left(\mu_{n}, \tau_{n}^{2}\right) .
\end{array}
$$

If the prior and posterior belong to the same family of distributions, we say that the prior is conjugate to the likelihood used.

- For example, normal prior $\mu \sim N\left(\mu_{0}, \tau_{0}^{2}\right)$ is conjugate to the normal likelihood $N\left(x \mid \mu, \sigma^{2}\right)$.
- Conjugacy is useful, because it makes computations easy.

Conjugate prior distributions (2/2)

- With conjugate prior, the posterior is available in a closed form

$$
p(\theta \mid x) \propto p(x \mid \theta) p(\theta)
$$

- Drop all terms not depending on θ
- Recognize the result as a density function belonging to the same family of distributions as the prior $p(\theta)$, but with different parameters.
- Examples (likelihood - conjugate prior):
- Likelihood for normal mean - Normal prior
- Likelihood for normal variance - Inverse-Gamma prior
- Bernoulli - Beta
- Binomial - Beta
- Exponential - Gamma
- Poisson - Gamma

Gaussian distribution, unknown mean and precision (1/2)

- Suppose we have observations $x=\left(x_{1}, \ldots, x_{n}\right)$ from $N\left(\mu, \lambda^{-1}\right)$, where both the mean μ and the precision λ are unknown.
- The conjugate prior distribution is the normal-gamma distribution

$$
\begin{aligned}
p\left(\mu, \lambda \mid \mu_{0}, \beta, a, b\right) & =N\left(\mu \mid \mu_{0},(\beta \lambda)^{-1}\right) \operatorname{Gam}(\lambda \mid a, b) \\
& \equiv \operatorname{Normal-Gamma}\left(\mu, \lambda \mid \mu_{0}, \beta, a, b\right)
\end{aligned}
$$

Note the dependency of the prior of μ on the value of λ.

Gaussian distribution, unknown mean and precision (2/2)

- The conjugate prior distribution is the normal-gamma distribution

$$
p\left(\mu, \lambda \mid \mu_{0}, \beta, a, b\right)=\operatorname{Normal-Gamma}\left(\mu, \lambda \mid \mu_{0}, \beta, a, b\right)
$$

- Posterior

$$
p(\mu, \lambda \mid x)=\operatorname{Normal-Gamma}\left(\mu, \lambda \mid \mu_{n}, \beta_{n}, a_{n}, b_{n}\right)
$$

with

$$
\begin{aligned}
\mu_{n} & =\frac{\beta \mu_{0}+n \bar{x}}{\beta+n} \\
\beta_{n} & =\beta+n \\
a_{n} & =a+\frac{n}{2} \\
b_{n} & =b+\frac{1}{2}\left(n s+\frac{\beta n\left(\bar{x}-\mu_{0}\right)^{2}}{\beta+n}\right)
\end{aligned}
$$

Gaussian distribution, unknown mean and precision, example ($1 / 2$)

- Simulate samples from $N\left(\mu=2, \sigma^{2}=0.25\right)$
- precision $\lambda=4$
- Try to learn μ and λ
- Specify prior

$$
p\left(\mu, \lambda \mid \mu_{0}, \beta, a, b\right)=\operatorname{Normal-Gamma}\left(\mu, \lambda \mid \mu_{0}, \beta, a, b\right)
$$

with

$$
\mu_{0}=0, \quad \beta=0.001, \quad a=0.01, \quad b=0.01
$$

- See: normal_example.m

Gaussian distribution, unknown mean and precision, example ($2 / 2$)

- When μ and λ have distribution
$\operatorname{Normal-Gamma}\left(\mu, \lambda \mid \mu_{n}, \beta_{n}, a_{n}, b_{n}\right)=N\left(\mu \mid \mu_{n},\left(\beta_{n} \lambda\right)^{-1}\right) \operatorname{Gam}\left(\lambda \mid a_{n}, b_{n}\right)$, marginal distribution of λ can be plotted using the PDF of $\operatorname{Gam}\left(\lambda \mid a_{n}, b_{n}\right)$
- To plot the marginal distribution of μ, we need to take the dependence on λ into account.
- we compute the marginal distribution of μ by averaging over $N\left(\mu \mid \mu_{n},\left(\beta_{n} \lambda_{i}\right)^{-1}\right)$, for multiple λ_{i} simulated from $\operatorname{Gam}\left(\lambda \mid a_{n}, b_{n}\right)$
- (could also be done analytically...)

Consistency

- If $p\left(x \mid \theta_{t}\right)$ is the true data generating mechanism, and A is a neighborhood of θ_{t}, then

$$
p(\theta \in A \mid x) \xrightarrow{n \rightarrow \infty} 1
$$

- The posterior distribution concentrates around the true value (if such a value exists!). See the normal_ example.m
- It follows that

$$
\bar{\theta}_{M A P} \xrightarrow{n \rightarrow \infty} \theta_{t} \quad \text { and } \quad \bar{\theta}_{M L} \xrightarrow{n \rightarrow \infty} \theta_{t}
$$

Multivariate Gaussian distribution

$$
N_{D}(x \mid \mu, \Sigma) \equiv(2 \pi)^{-\frac{D}{2}}|\Sigma|^{-\frac{1}{2}} e^{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)}
$$

- D : dimension, μ : mean, Σ : covariance matrix. With $D=2$:

$$
\mu=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right], \quad \Sigma=\left[\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{12} \\
\sigma_{21} & \sigma_{2}^{2}
\end{array}\right]
$$

- $\sigma_{12}=\sigma_{21}$: covariance between x_{1} and x_{2}. (tells direction of dependency)
- $\rho_{12}=\sigma_{12} /\left(\sigma_{1} \sigma_{2}\right)$:correlation between x_{1} and x_{2}. (direction and strength)

Multivariate Gaussian - characterization (1/2)

- Eigendecomposition

$$
\Sigma=E \Lambda E^{T}
$$

where $E^{T} E=I$ and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{D}\right)$.

- Now the transformation

$$
y=\Lambda^{-\frac{1}{2}} E^{T}(x-\mu)
$$

can be shown to have the distribution $N_{D}(0, I)$ (product of D independent standard Gaussians)

Multivariate Gaussian - characterization (2/2)

- Thus, $x=E \Lambda^{\frac{1}{2}} y+\mu$ with distribution $N_{D}(\mu, \Sigma)$ is obtained from standard independent Gaussians y by
- scaling by the square roots of eigenvalues
- rotating by the eigenvectors
- shifting by adding the mean

Marginalization and conditioning (1/2)

- Let $z \sim N(\mu, \Sigma)$ and consider partitioning it as:

$$
z=\binom{x}{y}
$$

with

$$
\mu=\binom{\mu_{x}}{\mu_{y}} \quad \text { and } \quad \Sigma=\left(\begin{array}{cc}
\Sigma_{x x} & \Sigma_{x y} \\
\Sigma_{y x} & \Sigma_{y y}
\end{array}\right)
$$

Marginalization and conditioning (2/2)

- Then
$p(x) \sim N\left(\mu_{x}, \Sigma_{x x}\right) \quad$ (marginalization)
$p(x \mid y)=N\left(\mu_{x}+\Sigma_{x y} \Sigma_{y y}^{-1}\left(y-\mu_{y}\right), \Sigma_{x x}-\Sigma_{x y} \Sigma_{y y}^{-1} \Sigma_{y x}\right)$
(conditioning
\Longrightarrow Marginals and conditionals of $M-V$ Gaussians are still $M-V$ Gaussian.

Important identities related to the multivariate Gaussian

- Linear transformation: if

$$
y=M x+\eta
$$

where $x \sim N\left(\mu_{x}, \Sigma_{x}\right)$ and $\eta \sim N(\mu, \Sigma)$, then

$$
p(y)=N\left(y \mid M \mu_{x}+\mu, M \Sigma_{x} M^{T}+\Sigma\right)
$$

- Completing the square:

$$
\frac{1}{2} x^{T} A x-b^{T} x=\frac{1}{2}\left(x-A^{-1} b\right)^{T} A\left(x-A^{-1} b\right)-\frac{1}{2} b^{T} A^{-1} b
$$

From which one can derive, for example

$$
\int \exp \left(-\frac{1}{2} x^{T} A x+b^{T} x\right) d x=\sqrt{\operatorname{det}\left(2 \pi A^{-1}\right)} \exp \left(\frac{1}{2} b^{T} A^{-1} b\right)
$$

Multivariate Gaussian - ML fitting

- Let $x=\left(x_{1}, \ldots, x_{n}\right)$ be from $N(\mu, \Sigma)$ with unknown μ and Σ. Log-likelihood, assuming data are i.i.d.:

$$
\begin{aligned}
L(\mu, \Sigma) & =\sum_{i=1}^{N} \log p\left(x_{i} \mid \mu, \Sigma\right) \\
& =-\frac{1}{2} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{T} \Sigma^{-1}\left(x_{i}-\mu\right)-\frac{N}{2} \log \operatorname{det}(2 \pi \Sigma)
\end{aligned}
$$

Multivariate Gaussian - ML fitting

- Differentiate $L(\mu, \Sigma)$ w.r.t. the vector μ :

$$
\nabla_{\mu} L(\mu, \Sigma)=\sum_{i=1}^{N} \Sigma^{-1}\left(x_{i}-\mu\right)
$$

Equating to zero gives

$$
\sum_{i=1}^{N} \Sigma^{-1} x_{i}=N \Sigma^{-1} \mu
$$

Thus we get

$$
\widehat{\mu}=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

- Similarly one can derive:

$$
\widehat{\Sigma}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{T}
$$

Multivariate Gaussian - Bayesian learning*

- Gaussian-Wishart is the conjugate prior, when $X_{i} \sim N(\mu, \Lambda)$ and both mean μ and precision Λ are unknown:

$$
p\left(\mu, \Lambda \mid \mu_{0}, \beta, W, v\right)=N\left(\mu \mid \mu_{0},(\beta \Lambda)^{-1}\right) \mathcal{W}(\Lambda \mid W, v)
$$

- If X_{i} are scalar, this is equivalent to the Gaussian-Gamma distribution.
- Posterior

$$
p(\mu, \Lambda \mid x)=N\left(\mu \mid \mu_{n},\left(\beta_{n} \Lambda\right)^{-1}\right) \mathcal{W}\left(\Lambda \mid W_{n}, v_{n}\right)
$$

Wishart distribution*

- Wishart distribution is a distribution for nonnegative-definite matrix-valued random variables

$$
\begin{gathered}
\Lambda \sim \mathcal{W}(\Lambda \mid W, v) \\
E(\Lambda)=v W \\
\operatorname{Var}\left(\Lambda_{i j}\right)=n\left(w_{i j}^{2}+w_{i i} w_{j j}\right)
\end{gathered}
$$

- Further: exercises...

Linear models with Gaussian noise

- Data $\mathcal{D}=\left\{\left(\mathbf{x}_{i}, y_{i}\right), i=1, \ldots, N\right\}$
- \mathbf{x}_{i} : the input
- y_{i} : the output
- Model:

$$
y=\underbrace{f(\mathbf{w}, \mathbf{x})}_{\text {clean output }}+\underbrace{\eta}_{\text {noise }}, \quad \eta \sim N\left(0, \beta^{-1}\right)
$$

- In the simplest case

$$
\begin{aligned}
f(\mathbf{w}, \mathbf{x}) & =\mathbf{w}^{T} \mathbf{x} \\
& =w_{1} x_{1}+\ldots+w_{D} x_{D}
\end{aligned}
$$

- The parameters w_{i} are also called the weights

Bayesian linear parameter models

- A prior distribution $p(\mathbf{w} \mid \alpha)$ is placed on the weights \mathbf{w}.
- The posterior distribution $p(\mathbf{w} \mid \mathcal{D}, \Gamma)$ can be computed, and reflects the uncertainty of the parameters.

Prior distribution

- A Gaussian prior distribution may placed on w:

$$
\begin{gathered}
p(\mathbf{w} \mid \alpha)=N\left(\mathbf{w} \mid \mathbf{0}, \alpha^{-1} \mathbf{l}\right) \\
=\prod_{i=1}^{D} N\left(w_{i} \mid 0, \alpha^{-1}\right)=\left(\frac{\alpha}{2 \pi}\right)^{\frac{D}{2}} e^{-\frac{\alpha}{2} \sum_{i} w_{i}^{2}}
\end{gathered}
$$

- Posterior

$$
\log p(\mathbf{w} \mid \Gamma, \mathcal{D})=-\frac{\beta}{2} \sum_{i=1}^{N}\left[y_{i}-\mathbf{w}^{T} \mathbf{x}_{i}\right]^{2}-\frac{\alpha}{2} \mathbf{w}^{T} \mathbf{w}+\text { const }
$$

Hyperparameters

- α : precision of the regression weights
- determines the amount of regularization
- large precision \rightarrow small variance \rightarrow weights are close to zero
- β : precision of the noise
- $\Gamma=\{\alpha, \beta\}$ are called the hyperparameters (in the course book...)

Posterior distribution

- Posterior distribution is obtained by completing the square (left as an exercise):

$$
p(\mathbf{w} \mid \Gamma, \mathcal{D})=N(\mathbf{w} \mid \mathbf{m}, S)
$$

where

$$
S=\left(\alpha I+\beta \sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{x}_{i}^{T}\right)^{-1}, \quad \mathbf{m}=\beta S \sum_{i=1}^{N} y_{i} \mathbf{x}_{i}
$$

- Mean prediction

$$
\widetilde{y}=\int \mathbf{w}^{T} \mathbf{x} \times p(\mathbf{w} \mid \Gamma, \mathcal{D}) d \mathbf{w}=\mathbf{m}^{T} \mathbf{x}
$$

Example, impact of hyperparameters $(1 / 3)$

- Setup: simulate $y=\mathbf{w}_{\text {true }}^{T} \mathbf{x}+\epsilon$, where $\epsilon \sim N\left(0, \beta^{-1}\right)$ and $\beta=1$
- The goal is to investigate how hyperparameter α affects the posterior distribution of the parameters \mathbf{w}

Example, impact of hyperparameters $(2 / 3)$

- Too large $\alpha, \operatorname{Var}(y-\widetilde{y})=1.54 \quad$ (Original $\operatorname{Var}(y)=1.75)$

- Too small $\alpha, \operatorname{Var}(y-\widetilde{y})=2.48$

Example, impact of hyperparameters $(3 / 3)$

- About good $\alpha, \operatorname{Var}(y-\widetilde{y})=1.46$
- A compromise between bias and variance

- Other sparse priors (e.g., Laplace, horse-shoe, spike-and-slab):

Example: genetic association studies

- Analysis of $\sim 1,000,000$ genetic polymorphisms in $\sim 50,000$ genomic regions (Peltola et al., 2012, PLoS ONE).
- Spike-and-slab prior on regression weights

Important points

- Bayesian learning of the Gaussian distribution using conjugate priors
- Multivariate Gaussian
- Characterization
- Marginal \& conditional distributions
- Linear transformation \& completing the square
- By placing a Gaussian prior on the parameters of linear regression, the posterior is also Gaussian.
- Meaning and impact of hyperparameters in Bayesian linear regression.

