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Lecture 3 overview

Gaussian distribution

Bayesian parameter learning

Multivariate Gaussian distribution

Characterization
Useful identities

Bayesian Linear Parameter Models (LPMs)

Posterior computation (given fixed hyperparameters)

Ch. 8 & 18 (until the end of Section 18.1.1) in Barber’s book
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Recall from lecture 1

Tools for probabilistic modeling
Models: Bayesian networks, sparse Bayesian linear regression, Gaussian
mixture models, latent linear models
Methods for inference: maximum likelihood, maximum a posteriori
(MAP), analytical, Laplace approximation, expectation maximization
(EM), Variational Bayes (VB), stochastic variational inference (SVI)
Ways to select between models

Box’s loop (Blei, 2014)
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What is a model?

A model specifies a probability distribution for a random variable Y ,
and it is often affected by some parameter θ. The model can be
denoted as p(y |θ).
Fitting the model (i.e. inference) corresponds to learning the value
(or the distribution) of θ, after some data y have been observed.
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Prior, Likelihood, Posterior

Bayes’rule tells us how to update our prior beliefs about variable θ in
light of the data y to a posterior belief:

p(θ|y)︸ ︷︷ ︸
posterior

=

p(y |θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior

p(y)︸︷︷︸
evidence

.

The evidence is also called the marginal likelihood.

p(y |θ) is the probability that the model generates the observed data
y when using parameter θ

L(θ) ≡ p(y |θ), with y held fixed, is called the likelihood
f (y) ≡ p(y |θ), with θ held fixed, is called the observation model

"Methods for inference" = Bayes’rule + some algorithm to do the
actual computations (on this course)
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Point estimates for parameters

The Maximum A Posteriori (MAP) parameter value, which maximizes
the posterior

θ∗ = argmax
θ
p(θ|y)

The Maximum likelihood assignment (ML)

θ∗ = argmax
θ
p(y |θ)

The full posterior distribution p(θ|y) tells also of the uncertainty
about the value of θ.
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Gaussian distribution

X ∼ N(µ, σ2)
Parameters: µ: mean, σ2: variance
Inverse of the variance, λ = 1/σ2, is called the precision
Standard deviation σ
95% credible interval equals approximately [µ− 2σ, µ+ 2σ]
PDF:

N(x |µ, σ2) = 1√
2πσ

e−
1
2σ2
(x−µ)2

Gaussian (or normal) distribution (wikip.)
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Bayesian estimation of the mean of a Gaussian (1/2)

Suppose we have observations x = (x1, . . . , xn) from N(µ, σ2), where
σ2 is known.

To learn µ, we specify a prior

µ ∼ N(µ0, τ20 )

Posterior

p(µ|x) = p(x |µ)p(µ)
p(x)

∝ p(µ)p(x |µ)

=
1√
2πτ0

e
− 1
2τ20
(µ−µ0)2 ×

n

∏
i=1

1√
2πσ

e−
1
2σ2
(xi−µ)2

∝ e
− 1
2τ20
(µ−µ0)− 1

2σ2
∑i (xi−µ)2

= . . . (details in BDA course)
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Bayesian estimation of the mean of a Gaussian (2/2)

Posterior

p(µ|x) ∝ e
− 1
2τ2n
(µ−µn)2

∝ N(µ|µn, τ2n )

where

µn =

1
τ20

µ0 +
n
σ2
x

n
σ2
+ 1

τ20

and
1
τ2n
=
n
σ2
+
1
τ20
.

Posterior precision 1/τ2n : sum of prior precision 1/τ20 and data
precision n/σ2

Posterior mean µn: precision weighted average of prior mean µ0 and
data mean x .

Pekka Marttinen (Aalto University) Advanced probabilistic methods January, 2021 9 / 36



Conjugate prior distributions (1/2)

In the previous example

Prior: µ ∼ N(µ0, τ20 )
Posterior: µ ∼ N(µn, τ2n ).

If the prior and posterior belong to the same family of distributions,
we say that the prior is conjugate to the likelihood used.

For example, normal prior µ ∼ N(µ0, τ20 ) is conjugate to the normal
likelihood N(x |µ, σ2).

Conjugacy is useful, because it makes computations easy.
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Conjugate prior distributions (2/2)

With conjugate prior, the posterior is available in a closed form

p(θ|x) ∝ p(x |θ)p(θ)

Drop all terms not depending on θ
Recognize the result as a density function belonging to the same family
of distributions as the prior p(θ), but with different parameters.

Examples (likelihood - conjugate prior):

Likelihood for normal mean - Normal prior
Likelihood for normal variance - Inverse-Gamma prior
Bernoulli - Beta
Binomial - Beta
Exponential - Gamma
Poisson - Gamma
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Gaussian distribution, unknown mean and precision (1/2)

Suppose we have observations x = (x1, . . . , xn) from N(µ,λ−1),
where both the mean µ and the precision λ are unknown.

The conjugate prior distribution is the normal-gamma distribution

p(µ,λ|µ0, β, a, b) = N(µ|µ0, (βλ)−1)Gam(λ|a, b)
≡ Normal-Gamma(µ,λ|µ0, β, a, b)

Note the dependency of the prior of µ on the value of λ.
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Gaussian distribution, unknown mean and precision (2/2)

The conjugate prior distribution is the normal-gamma distribution

p(µ,λ|µ0, β, a, b) = Normal-Gamma(µ,λ|µ0, β, a, b)

Posterior

p(µ,λ|x) = Normal-Gamma(µ,λ|µn, βn, an, bn),

with

µn =
βµ0 + nx

β+ n

βn = β+ n

an = a+
n
2

bn = b+
1
2

(
ns +

βn(x − µ0)2

β+ n

)
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Gaussian distribution, unknown mean and precision,
example (1/2)

Simulate samples from N(µ = 2, σ2 = 0.25)

precision λ = 4

Try to learn µ and λ

Specify prior

p(µ,λ|µ0, β, a, b) = Normal-Gamma(µ,λ|µ0, β, a, b)

with
µ0 = 0, β = 0.001, a = 0.01, b = 0.01

See: normal_example.m
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Gaussian distribution, unknown mean and precision,
example (2/2)

When µ and λ have distribution

Normal-Gamma(µ,λ|µn, βn, an, bn) = N(µ|µn, (βnλ)−1)Gam(λ|an, bn),

marginal distribution of λ can be plotted using the PDF of
Gam(λ|an, bn)
To plot the marginal distribution of µ, we need to take the
dependence on λ into account.

we compute the marginal distribution of µ by averaging over
N(µ|µn , (βnλi )

−1), for multiple λi simulated from Gam(λ|an , bn)
(could also be done analytically...)
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Consistency

If p(x |θt ) is the true data generating mechanism, and A is a
neighborhood of θt , then

p(θ ∈ A|x) n→∞→ 1.

The posterior distribution concentrates around the true value (if such
a value exists!). See the normal_example.m

It follows that

θMAP
n→∞→ θt and θML

n→∞→ θt
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Multivariate Gaussian distribution

ND (x |µ,Σ) ≡ (2π)−
D
2 |Σ|− 1

2 e−
1
2 (x−µ)T Σ−1(x−µ)

D: dimension, µ: mean, Σ: covariance matrix. With D = 2:

µ =

[
µ1
µ2

]
, Σ =

[
σ21 σ12
σ21 σ22

]
σ12 = σ21: covariance between x1 and x2. (tells direction of
dependency)
ρ12 = σ12/(σ1σ2):correlation between x1 and x2. (direction and
strength)
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Multivariate Gaussian - characterization (1/2)

Eigendecomposition
Σ = EΛET ,

where ETE = I and Λ =diag(λ1, . . . ,λD ).
Now the transformation

y = Λ−
1
2ET (x − µ)

can be shown to have the distribution ND (0, I ) (product of D
independent standard Gaussians)
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Multivariate Gaussian - characterization (2/2)

Thus, x = EΛ
1
2 y + µ with distribution ND (µ,Σ) is obtained from

standard independent Gaussians y by

scaling by the square roots of eigenvalues
rotating by the eigenvectors
shifting by adding the mean
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Marginalization and conditioning (1/2)

Let z ∼ N(µ,Σ) and consider partitioning it as:

z =
(
x
y

)
with

µ =

(
µx
µy

)
and Σ =

(
Σxx Σxy
Σyx Σyy

)
.
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Marginalization and conditioning (2/2)

Then

p(x) ∼ N(µx ,Σxx ) (marginalization)

p(x |y) = N(µx + ΣxyΣ−1yy (y − µy ),Σxx − ΣxyΣ−1yy Σyx ) (conditioning)

=⇒Marginals and conditionals of M-V Gaussians are still M-V
Gaussian.
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Important identities related to the multivariate Gaussian

Linear transformation: if

y = Mx + η,

where x ∼ N(µx ,Σx ) and η ∼ N(µ,Σ),then

p(y) = N(y |Mµx + µ,MΣxMT + Σ)

Completing the square:

1
2
xTAx − bT x = 1

2
(x − A−1b)TA(x − A−1b)− 1

2
bTA−1b

From which one can derive, for example∫
exp(−1

2
xTAx + bT x)dx =

√
det(2πA−1) exp(

1
2
bTA−1b)
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Multivariate Gaussian - ML fitting

Let x = (x1, . . . , xn) be from N(µ,Σ) with unknown µ and Σ.
Log-likelihood, assuming data are i .i .d .:

L(µ,Σ) =
N

∑
i=1
log p(xi |µ,Σ)

= −1
2

N

∑
i=1
(xi − µ)TΣ−1(xi − µ)− N

2
log det(2πΣ)

Pekka Marttinen (Aalto University) Advanced probabilistic methods January, 2021 23 / 36



Multivariate Gaussian - ML fitting

Differentiate L(µ,Σ) w.r.t. the vector µ:

5µL(µ,Σ) =
N

∑
i=1

Σ−1(xi − µ)

Equating to zero gives

N

∑
i=1

Σ−1xi = NΣ−1µ.

Thus we get

µ̂ =
1
N

N

∑
i=1
xi

Similarly one can derive:

Σ̂ =
1
N

N

∑
i=1
(xi − x)(xi − x)T

Pekka Marttinen (Aalto University) Advanced probabilistic methods January, 2021 24 / 36



Multivariate Gaussian - Bayesian learning*

Gaussian-Wishart is the conjugate prior, when Xi ∼ N(µ,Λ) and
both mean µ and precision Λ are unknown:

p(µ,Λ|µ0, β,W , ν) = N(µ|µ0, (βΛ)−1)W(Λ|W , ν)

If Xi are scalar, this is equivalent to the Gaussian-Gamma distribution.

Posterior

p(µ,Λ|x) = N(µ|µn, (βnΛ)−1)W(Λ|Wn, νn)
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Wishart distribution*

Wishart distribution is a distribution for nonnegative-definite
matrix-valued random variables

Λ ∼ W(Λ|W , ν)

E (Λ) = νW

Var(Λij ) = n(w2ij + wiiwjj )

Further: exercises...
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Linear models with Gaussian noise

Data D = {(xi , yi ), i = 1, . . . ,N}
xi : the input
yi : the output

Model:
y = f (w, x)︸ ︷︷ ︸

clean output

+ η︸︷︷︸
noise

, η ∼ N(0, β−1)

In the simplest case

f (w, x)= wT x
= w1x1 + . . .+ wDxD

The parameters wi are also called the weights
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Bayesian linear parameter models

A prior distribution p(w|α) is placed on the weights w.
The posterior distribution p(w|D, Γ) can be computed, and reflects
the uncertainty of the parameters.
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Prior distribution

A Gaussian prior distribution may placed on w:

p(w|α) = N(w|0, α−1I)

=
D

∏
i=1
N(wi |0, α−1) =

( α

2π

) D
2
e−

α
2 ∑i w

2
i

Posterior

log p(w|Γ,D) = −β

2

N

∑
i=1

[
yi −wT xi

]2
− α

2
wTw+ const
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Hyperparameters

α: precision of the regression weights

determines the amount of regularization
large precision → small variance → weights are close to zero

β: precision of the noise

Γ = {α, β} are called the hyperparameters (in the course book...)
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Posterior distribution

Posterior distribution is obtained by completing the square (left as an
exercise):

p(w|Γ,D) = N(w|m, S)
where

S =

(
αI + β

N

∑
i=1
xixi T

)−1
, m = βS

N

∑
i=1
yixi

Mean prediction

ỹ =
∫
wT x×p(w|Γ,D)dw = mT x
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Example, impact of hyperparameters (1/3)

Setup: simulate y = wTtruex+ ε, where ε ∼ N(0, β−1) and β = 1

The goal is to investigate how hyperparameter α affects the posterior
distribution of the parameters w
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Example, impact of hyperparameters (2/3)

Too large α,Var(y − ỹ) = 1.54 (Original Var(y) = 1.75)

Too small α, Var(y − ỹ) = 2.48
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Example, impact of hyperparameters (3/3)

About good α, Var(y − ỹ) = 1.46
A compromise between bias and variance

Other sparse priors (e.g., Laplace, horse-shoe, spike-and-slab):
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Example: genetic association studies

Analysis of ∼ 1, 000, 000 genetic polymorphisms in ∼ 50, 000 genomic
regions (Peltola et al., 2012, PLoS ONE ).

Spike-and-slab prior on regression weights
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Important points

Bayesian learning of the Gaussian distribution using conjugate priors

Multivariate Gaussian

Characterization
Marginal & conditional distributions
Linear transformation & completing the square

By placing a Gaussian prior on the parameters of linear regression, the
posterior is also Gaussian.

Meaning and impact of hyperparameters in Bayesian linear regression.
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