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Lecture 3 overview

Gaussian distribution

o Bayesian parameter learning

@ Multivariate Gaussian distribution

o Characterization
o Useful identities

Bayesian Linear Parameter Models (LPMs)
o Posterior computation (given fixed hyperparameters)

Ch. 8 & 18 (until the end of Section 18.1.1) in Barber's book
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Recall from lecture 1

@ Tools for probabilistic modeling

e Models: Bayesian networks, sparse Bayesian linear regression, Gaussian
mixture models, latent linear models

e Methods for inference: maximum likelihood, maximum a posteriori
(MAP), analytical, Laplace approximation, expectation maximization
(EM), Variational Bayes (VB), stochastic variational inference (SVI)

e Ways to select between models

Model Infer Criticize

Box's loop (Blei, 2014)
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What is a model?

@ A model specifies a probability distribution for a random variable Y/,
and it is often affected by some parameter 8. The model can be
denoted as p(y|0).

e Fitting the model (i.e. inference) corresponds to learning the value
(or the distribution) of 8, after some data y have been observed.
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Prior, Likelihood, Posterior

@ Bayes’ rule tells us how to update our prior beliefs about variable 6 in
light of the data y to a posterior belief:

p(ﬂ@@

N——
likelihood prior
p(0ly) = "
2= 0)
posterior S~
evidence

The evidence is also called the marginal likelihood.
@ p(y|0) is the probability that the model generates the observed data
y when using parameter 6
o L(6) = p(y|6), with y held fixed, is called the likelihood
o f(y) = p(y|0), with 0 held fixed, is called the observation model

@ "Methods for inference” = Bayes' rule + some algorithm to do the
actual computations (on this course)
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Point estimates for parameters

e The Maximum A Posteriori (MAP) parameter value, which maximizes
the posterior
0, = argmax p(6ly)

@ The Maximum likelihood assignment (ML)

0, = argmax p(y|6)

@ The full posterior distribution p(6|y) tells also of the uncertainty
about the value of 6.
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Gaussian distribution

o X ~ N(u,o?)
e Parameters: p: mean, o2: variance
o Inverse of the variance, A = 1/02, is called the precision
@ Standard deviation o
@ 95% credible interval equals approximately [y — 20, 4 + 20]
e PDF: .
T2 X TH
N(x|p,0?) = rg
10 JRRR BBEERERA

H=0, 07210,

08 11=0, 02250, — ]|
F p=-2, 0%=05, = |
06

L L ! L !
-1 1 5

Gaussian (or normal) distribution (wikip.)
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Bayesian estimation of the mean of a Gaussian (1/2)

@ Suppose we have observations x = (xi, ..., xp) from N(u, 0?), where

2

o< is known.

@ To learn p, we specify a prior
2
p~ N(po, 5)
@ Posterior

p(ulx) = PEIPE) (i)

2

622 i—H)

1 2(74 #0)?
N \/27TT0 H 2o

—7102(14—140)—7;2 ilxi—p )2

= ... (details in BDA course)
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Bayesian estimation of the mean of a Gaussian (2/2)

@ Posterior

(g )2

plulx) oce 21

o< N(plpn, T3)

where .
n—

U _LVO‘FFX and i—i i
! %4-%5 7 02 T

@ Posterior precision 1/72: sum of prior precision 1/T§ and data
precision n/c?

@ Posterior mean p,: precision weighted average of prior mean pg and
data mean X.
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Conjugate prior distributions (1/2)

@ In the previous example

Prior: u ~ N(po, )
Posterior: p ~ N(pn, T2).
If the prior and posterior belong to the same family of distributions,
we say that the prior is conjugate to the likelihood used.

o For example, normal prior y ~ N(pug, Tg) is conjugate to the normal
likelihood N(x|u, 0?).

o Conjugacy is useful, because it makes computations easy.
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Conjugate prior distributions (2/2)

@ With conjugate prior, the posterior is available in a closed form
p(0]x) o< p(x[0)p(0)

e Drop all terms not depending on 6
o Recognize the result as a density function belonging to the same family
of distributions as the prior p(6), but with different parameters.

e Examples (likelihood - conjugate prior):

Likelihood for normal mean - Normal prior
Likelihood for normal variance - Inverse-Gamma prior
Bernoulli - Beta

Binomial - Beta

Exponential - Gamma

Poisson - Gamma
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Gaussian distribution, unknown mean and precision (1/2)

@ Suppose we have observations x = (xi, ..., xp) from N(p, A71),
where both the mean y and the precision A are unknown.

@ The conjugate prior distribution is the normal-gamma distribution

p(u. Mo, B.a, b) = N(p|po, (BA) 1) Gam(A|a, b)
= Normal-Gamma(p, A|po, B, a, b)

Note the dependency of the prior of u on the value of A.
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Gaussian distribution, unknown mean and precision (2/2)

@ The conjugate prior distribution is the normal-gamma distribution

p(u, AMuo, B, a, b) = Normal-Gamma(p, A|uo, B, a, b)

@ Posterior

p(u, A|lx) = Normal-Gamma(u, A|ptn, Bn, an, bn),

with
_ ﬁ‘uo—l—ni
n ﬁ—l—n
Pn=p+n
_ +ﬂ
a, = a 5
1 Bn(X — pho)?
bn—b—|—2<ns—|— Bin
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Gaussian distribution, unknown mean and precision,

example (1/2)

e Simulate samples from N(y = 2,02 = 0.25)
e precision A = 4

@ Try to learn y and A

@ Specify prior

p(u, Mo, B, a, b) = Normal-Gamma(p, A|uo, B, a, b)

with
uo=0, B=0.001, a=0.01, b=001

@ See: normal example.m
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Gaussian distribution, unknown mean and precision,

example (2/2)

@ When p and A have distribution

Normal-Gamma(p, A ptn, Bn, an, bn) = N(pt|ptn, (BaA) 1) Gam(A|ay, by),

marginal distribution of A can be plotted using the PDF of
Gam(Alay, by)
@ To plot the marginal distribution of y, we need to take the

dependence on A into account.

e we compute the marginal distribution of u by averaging over

N(p|ptn, (BaAi)™Y), for multiple A; simulated from Gam(A|ap, by)
o (could also be done analytically...)
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e If p(x|6;) is the true data generating mechanism, and A is a
neighborhood of 6;, then

p(6 € Alx) "=7 1.
@ The posterior distribution concentrates around the true value (if such
a value exists!). See the normal _example.m

o It follows that

n—oo

Opap = 0, and Oy "= 0,
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Multivariate Gaussian distribution

Np (x|, £) = (27r) " 7 [5| ze 20w = 0p)

@ D: dimension, y: mean, X: covariance matrix. With D = 2:

2
§= H1 y — oy 012
= , = 5
Ha 021 05
@ 012 = 071: covariance between x; and x;. (tells direction of

dependency)
@ p12 = 012/ (0102):correlation between x; and xy. (direction and

strength)
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Multivariate Gaussian - characterization (1/2)

iy
,1‘}:\\\‘\‘\

e Eigendecomposition
Y =EAET,

where ETE = [ and A =diag(A1,...,Ap).
@ Now the transformation
y=ATET (x—p)

can be shown to have the distribution Np(0, /) (product of D
independent standard Gaussians)
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o Thus, x = EAZy + y with distribution Np(y, %) is obtained from
standard independent Gaussians y by
e scaling by the square roots of eigenvalues

e rotating by the eigenvectors
e shifting by adding the mean
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Marginalization and conditioning (1/2)

@ Let z~ N(u,X) and consider partitioning it as:

()

with
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Marginalization and conditioning (2/2)

@ Then
p(x) ~ N(px,Zxx) (marginalization)
p(xly) = N(ix + 2 2,0 (y — 1y), T — iy 55, Eyx)  (conditioning

—>Marginals and conditionals of M-V Gaussians are still M-V
Gaussian.
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Important identities related to the multivariate Gaussian

o Linear transformation: if
y = Mx+rn,
where x ~ N(pix, 2y) and 57 ~ N(u, X),then
p(y) = N(y|Mpx + p, MEMT + X))
o Completing the square:
T Ax—bTx = 1(x —ATID)TA(x — A1) — LpTa1h
2 2 2

From which one can derive, for example

1 1
/exp(_EXTAx +b7x)dx = \/det(2A ) exp(5bT A1b)
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Multivariate Gaussian - ML fitting

o Let x = (x1,...,x,) be from N(p, X) with unknown y and X.
Log-likelihood, assuming data are i.i.d.:

N
L(p,2) = ;Iogp(x,-lﬂl)

S im0 TE = 1) — Nlog det(2x)
= 2,-:1X’ 1 Xi — ) — — log de
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Multivariate Gaussian - ML fitting

o Differentiate L(p, X) w.r.t. the vector j:

N
Vul(p ) = Z 26— )

i=1
Equating to zero gives

N
Y =g = N
i=1

Thus we get

=)

1 N

@ Similarly one can derive:

£ LY R -
Ni:1
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Multivariate Gaussian - Bayesian learning*

e Gaussian-Wishart is the conjugate prior, when X; ~ N(p, A) and
both mean u and precision A are unknown:

p(i Alpo, B, W,v) = N(pluo, (BA) T )W(AIW, v)

o If X; are scalar, this is equivalent to the Gaussian-Gamma distribution.

@ Posterior

P Alx) = N(pln, (BaA) " )W (AW, vn)
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Wishart distribution*

@ Wishart distribution is a distribution for nonnegative-definite
matrix-valued random variables

A~ W(A|W,v)

E(A) = vW
Var(Ajj) = n(W,-? + wiiwjj)

@ Further: exercises...
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Linear models with Gaussian noise

e Data D :{(X,',y;), = 1,...,N}
e X;: the input
e y;: the output
o Model:
y= flwx) + 7, 5~N0OB)
clean output noise
@ In the simplest case

f(w,x)=w'x

= wixy + ...+ wpxp

The parameters w; are also called the weights
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Bayesian linear parameter models

@ A prior distribution p(w|a) is placed on the weights w.

@ The posterior distribution p(w|D,T) can be computed, and reflects
the uncertainty of the parameters.
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Prior distribution

@ A Gaussian prior distribution may placed on w:

p(wla) = N(w|0,a711)

~[Ivolo.a™) = ()

D
2

2
—5 X w;

@ Posterior

log p(w|T', D)

I\JRI.

N 2 ® T
Z[ —w x,] — oW W + const
i=1
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Hyperparameters

(s s

A.'

@ «: precision of the regression weights

o determines the amount of regularization
o large precision — small variance — weights are close to zero

@ [3: precision of the noise

o I' = {a, B} are called the hyperparameters (in the course book...)
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Posterior distribution

@ Posterior distribution is obtained by completing the square (left as an

exercise):
p(w|l, D) = N(w|m, 5)

where
N -1 N
S={al+BY xixi"| | m=BS) yx
i=1 i=1

@ Mean prediction

y = /waXp(w]F,D)dw =m'x
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Example, impact of hyperparameters (1/3)

o Setup: simulate y = w/ .x + €, where e ~ N(0,871) and B =1

@ The goal is to investigate how hyperparameter a affects the posterior
distribution of the parameters w
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Example, impact of hyperparameters (2/3)

@ Too large ,Var(y —y) = 1.54 (Original Var(y) = 1.75)

05 Posterior weights, alpha=209, beta=1 Test set predictions
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Example, impact of hyperparameters (3/3)

e About good &, Var(y —y) = 1.46
@ A compromise between bias and variance

Posterior weights, alpha=20, beta=1 Test set predictions

g 1
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Example: genetic association studies

@ Analysis of ~ 1,000, 000 genetic polymorphisms in ~ 50,000 genomic
regions (Peltola et al., 2012, PLoS ONE).

@ Spike-and-slab prior on regression weights

HDL-C BMA A/AH

posterior probability

x
PTI Xt .. x Ly »o 2
4 5 6 7 8 9 10 11 12 13141516 17 181920 22
regions (chromosomes)
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Important points

Bayesian learning of the Gaussian distribution using conjugate priors
@ Multivariate Gaussian

o Characterization
e Marginal & conditional distributions
e Linear transformation & completing the square

By placing a Gaussian prior on the parameters of linear regression, the
posterior is also Gaussian.

@ Meaning and impact of hyperparameters in Bayesian linear regression.
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