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Lecture 5 overview

Gaussian mixture models (GMMs), recap

EM algorithm

EM for Gaussian mixture models

Suggested reading: Bishop: Pattern Recognition and Machine
Learning

e p. 110-113 (2.3.9): Mixtures of Gaussians
e simple example.pdf
e p. 430-443: EM for Gaussian mixtures
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GMMs, latent variable representation

e Introduce latent variables z,=(z1, ..., z,x) which spcifies the
component k of observation x,

X'IL
th
kt" elem. u )
_NJ
@ Define
K K

) = Hni"k and  p(x,|z,) = H (Xn|p, 2k )

Then the marginal distribution p(x,) is a GM

K
p(xn) = Y 7Tk N(xnpt, i)
k=1
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GMM: responsibilities, complete data

@ Posterior probability (responsibility) p(z,x = 1|x,) that observation
X, was generated by component k

70N (X | pk, 2 )
Y71 7N (xa iy, )

Y(znk) = p(zok = 1[x,) =

o Complete data: latent variables z and data x together: (x, z)
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|dea of the EM algorithm (1/2)

@ Let X denote the observed data, and 0 model parameters. The goal
in maximum likelihood is to find 6:

0 = arg max {log p(X10)}
@ If model contains latent variables Z, the log-likelihood is given by
log p(X|6) = log {ZP(X,ZI@} ,
Z
which may be difficult to maximize analytically

@ Possible solutions: 1) numerical optimization, 2) the EM algorithm
(expectation-maximization)
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|dea of the EM algorithm (2/2)

@ X: observed data, Z: unobserved latent variables
e {X,Z}: complete data, X: incomplete data

@ In EM algorithm, we assume that the complete data log-likelihood:
log p(X, Z16)

is easy to maximize.
@ Problem: Z is not observed

@ Solution: maximize

Q(6,600) = Ez|x g, [log p(X, Z|0)]
=Y p(Z|X,60)logp(X, Z|6)
Z

where p(Z|X, ) is the posterior distribution of the latent variables
computed using the current parameter estimate 6g
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lllustration of the EM algorithm for GMMs
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EM algorithm in detail

Goal: maximize log p(X|0) w.r.t. 6

O |Initialize 0
@ E-step Evaluate p(Z|X,6p), and then compute

Q(6,60) = Ez|x 6, llog p(X, Z|0)] = ) p(Z|X,60) log p(X, Z|6)
Z
© M-step Evaluate 67" using
0"¢" = arg max Q(6,60).

Set 6y «— 0"
@ Repeat E and M steps until convergence
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Why EM works
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Figure: 11.16 in Murphy (2012)

@ As a function of 8, Q(6,6y) is a lower bound of the log-likelihood
log p(x|0) (plus a constant, see Bishop, Ch. 9.4).

e EM iterates between 1) updating the lower bound (E-step), 2)
maximizing the lower bound (M-step).
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EM algorithm, comments

@ In general, Z does not have to be discrete, just replace the
summation in Q(6, 6) by integration.

e EM-algorithm can be used to compute the MAP (maximum a
posteriori) estimate by maximizing in the M-step Q(6,6q) + log p(0).

@ In general, EM-algorithm is applicable when the observed data X can
be augmented into complete data {X, Z} such that log p(X, Z|0) is
easy to maximize; Z does not have to be latent variables but can
represent, for example, unobserved values of missing or censored
observations.
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EM algorithm, simple example

o Consider N independent observations x = (x1,...,xy) from a
two-component mixture of univariate Gaussians

pxol8) = ZN(xa[0,1) 4+ 2 N0, 1). (1)

@ One unknown parameter, 6, the mean of the second component.

@ Goal: estimate R
6 = arg max {log p(x|6)} .

e simple_example.pdf
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EM algorithm for GMMs

p(x) = Lr_y N (x|pic, )

Q Initialize parameter i, X and mizing coefficients 7t,. Repeat until
convergence:

© E-step: Evaluate the responsibilities using current parameter values

70 N (X | pii, 2k )
Y 7N (% |k, Z5)

© M-step: Re-estimate the parameters using the current responsibilities

')’(an) =

W = 1Y (zx,
) Nk n=1 !

new 1 N new new
Xy =N Z’Y(an)(xn—ﬂk ) (X0 — i )T
k n=1
nnew — Nk
Y
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Derivation of the EM algorithm for GMMs

@ In the M-step the formulas for ¢ and X7¢" are obtained by
differentiating the expected complete data log-likelihood Q(6, 6o)
with respect to the particular parameters, and setting the derivatives
to zero.

@ The formula for 71}¢" can be derived by maximizing Q(6, 6y) under
the constraint Zf: 7tk = 1. This can be done using the Lagrange
multipliers.
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EM for GMM, caveats

@ EM converges to a local optimum. In fact, the ML estimation for
GMMs is not well-defined due to singularities: if o, — 0 for
components k with a single data point, likelihood goes to infinity
(fig). Remedy: prior on oy.

o Label-switching: non-identifiability due to the fact that cluster labels
can be switched and likelihood remains the same.

@ In practice it is recommended to initialize the EM for the GMM by
k-means.
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GMM vs. k-means

o "Why use GMMs and not just k-means?"

Different cluster analysis results on "mouse" data set:

Original Data k-Means Clustering EM Clustering
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from Wikipedia

@ C(lusters can be of different sizes and shapes

@ Probabilistic assignment of data items to clusters

@ Possibility to include prior knowledge (structure of the model/prior
distributions on the parameters)
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Important points

@ ML-estimation of GMMs can be done using numerical optimization or
the EM algorithm.

@ The main idea of the EM algorithm is to maximize the expectation of
the complete data log-likelihood, where the expectation is computed
with respect to the current posterior distributions (responsibilites) of
the latent variables.
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