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Lecture 5 overview

Gaussian mixture models (GMMs), recap

EM algorithm

EM for Gaussian mixture models

Suggested reading: Bishop: Pattern Recognition and Machine
Learning

p. 110-113 (2.3.9): Mixtures of Gaussians
simple_example.pdf
p. 430-443: EM for Gaussian mixtures
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GMMs, latent variable representation

Introduce latent variables zn=(zn1, . . . , znK ) which spcifies the
component k of observation xn

zn = (0, . . . , 0, 1︸︷︷︸
k th elem.

, 0, . . . , 0)T

Define

p(zn) =
K

∏
k=1

πznkk and p(xn |zn) =
K

∏
k=1

N(xn |µk ,Σk )znk

Then the marginal distribution p(xn) is a GMM:

p(xn) =
K

∑
k=1

πkN(xn |µk ,Σk )
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GMM: responsibilities, complete data

Posterior probability (responsibility) p(znk = 1|xn) that observation
xn was generated by component k

γ(znk ) ≡ p(znk = 1|xn) =
πkN(xn |µk ,Σk )

∑K
j=1 πjN(xn |µj ,Σj )

Complete data: latent variables z and data x together: (x, z)
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Idea of the EM algorithm (1/2)

Let X denote the observed data, and θ model parameters. The goal
in maximum likelihood is to find θ̂:

θ̂ = argmax
θ
{log p(X |θ)}

If model contains latent variables Z , the log-likelihood is given by

log p(X |θ) = log
{

∑
Z

p(X ,Z |θ)
}
,

which may be diffi cult to maximize analytically

Possible solutions: 1) numerical optimization, 2) the EM algorithm
(expectation-maximization)
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Idea of the EM algorithm (2/2)

X : observed data, Z : unobserved latent variables
{X ,Z}: complete data, X : incomplete data
In EM algorithm, we assume that the complete data log-likelihood:

log p(X ,Z |θ)

is easy to maximize.

Problem: Z is not observed

Solution: maximize

Q(θ, θ0) ≡ EZ |X ,θ0 [log p(X ,Z |θ)]
= ∑

Z

p(Z |X , θ0) log p(X ,Z |θ)

where p(Z |X , θ0) is the posterior distribution of the latent variables
computed using the current parameter estimate θ0
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Illustration of the EM algorithm for GMMs
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EM algorithm in detail

Goal: maximize log p(X |θ) w.r.t. θ

1 Initialize θ0
2 E-step Evaluate p(Z |X , θ0), and then compute

Q(θ, θ0) = EZ |X ,θ0 [log p(X ,Z |θ)] = ∑
Z

p(Z |X , θ0) log p(X ,Z |θ)

3 M-step Evaluate θnew using

θnew = argmax
θ
Q(θ, θ0).

Set θ0 ← θnew

4 Repeat E and M steps until convergence
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Why EM works

Figure: 11.16 in Murphy (2012)

As a function of θ, Q(θ, θ0) is a lower bound of the log-likelihood
log p(x |θ) (plus a constant, see Bishop, Ch. 9.4).
EM iterates between 1) updating the lower bound (E-step), 2)
maximizing the lower bound (M-step).
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EM algorithm, comments

In general, Z does not have to be discrete, just replace the
summation in Q(θ, θ0) by integration.

EM-algorithm can be used to compute the MAP (maximum a
posteriori) estimate by maximizing in the M-step Q(θ, θ0) + log p(θ).

In general, EM-algorithm is applicable when the observed data X can
be augmented into complete data {X ,Z} such that log p(X ,Z |θ) is
easy to maximize; Z does not have to be latent variables but can
represent, for example, unobserved values of missing or censored
observations.

Pekka Marttinen (Aalto University) Advanced probabilistic methods February, 2021 10 / 16



EM algorithm, simple example

Consider N independent observations x = (x1, . . . , xN ) from a
two-component mixture of univariate Gaussians

p(xn |θ) =
1
2
N(xn |0, 1) +

1
2
N(xn |θ, 1). (1)

One unknown parameter, θ, the mean of the second component.

Goal: estimate
θ̂ = argmax

θ
{log p(x|θ)} .

simple_example.pdf
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EM algorithm for GMMs

p(x) = ∑K
k=1 πkN(x|µk ,Σk )

1 Initialize parameter µk , Σk and mizing coeffi cients πk . Repeat until
convergence:

2 E-step: Evaluate the responsibilities using current parameter values

γ(znk ) =
πkN(xn |µk ,Σk )

∑K
j=1 πkN(xn |µk ,Σj )

3 M-step: Re-estimate the parameters using the current responsibilities

µnewk =
1
Nk

N

∑
n=1

γ(znk )xn

Σnewk =
1
Nk

N

∑
n=1

γ(znk )(xn − µnewk )(xn − µnewk )T

πnewk =
Nk
N
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Derivation of the EM algorithm for GMMs

In the M-step the formulas for µnewk and Σnewk are obtained by
differentiating the expected complete data log-likelihood Q(θ, θ0)
with respect to the particular parameters, and setting the derivatives
to zero.

The formula for πnewk can be derived by maximizing Q(θ, θ0) under
the constraint ∑K

k= πk = 1. This can be done using the Lagrange
multipliers.
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EM for GMM, caveats

EM converges to a local optimum. In fact, the ML estimation for
GMMs is not well-defined due to singularities: if σk → 0 for
components k with a single data point, likelihood goes to infinity
(fig). Remedy: prior on σk .

Label-switching: non-identifiability due to the fact that cluster labels
can be switched and likelihood remains the same.
In practice it is recommended to initialize the EM for the GMM by
k-means.
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GMM vs. k-means

"Why use GMMs and not just k-means?"

from Wikipedia

1 Clusters can be of different sizes and shapes
2 Probabilistic assignment of data items to clusters
3 Possibility to include prior knowledge (structure of the model/prior
distributions on the parameters)
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Important points

ML-estimation of GMMs can be done using numerical optimization or
the EM algorithm.

The main idea of the EM algorithm is to maximize the expectation of
the complete data log-likelihood, where the expectation is computed
with respect to the current posterior distributions (responsibilites) of
the latent variables.
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