Advanced probabilistic methods

Lecture 6: Variational inference

Pekka Marttinen

Aalto University

March, 2021

Lecture 6 overview

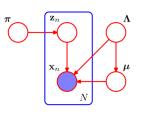
- Variational inference overview
- KL-divergence
- Mean-field variational inference
- Simple example using variational inference
- Suggested reading: Bishop: Pattern Recognition and Machine Learning
 - p. 461-474
 - simple_vb_example.pdf for the derivation of the VB updates for a simple GMM.
 - The general VB formulation for GMMs p. 474-486 (optional)

Approximate inference

 A central task in probabilistic modeling is to evaluate the posterior distribution

of latent variables Z given the observed variables X.

- In a fully Bayesian model, model parameters θ may be given priors and included as part of Z (unlike in the EM).
 - Often, computation of p(Z|X) may not be possible in a closed form, and approximations are needed
 - variational inference (today)
 - stochastic variational inference (later)
 - sampling (→Bayesian data analysis)



Variational inference

- Idea: Approximate the posterior distribution of unknowns p(Z|X) with a tractable distribution q(Z).
- For example, q(Z) may be assumed to have a simple form, e.g., Gaussian, or to factorize in a certain way.
- For the GMM, it would be sufficient to assume

$$q(\mathbf{z}, \pi, \Lambda, \mu) = q(\mathbf{z})q(\pi, \Lambda, \mu)$$

Basis of variational inference

• When $q(\mathbf{z})$ is an approximation for $p(\mathbf{z}|\mathbf{x})$, it is always true that

$$\log p(\mathbf{x}) = \mathcal{L}(q) + KL(q||p),$$

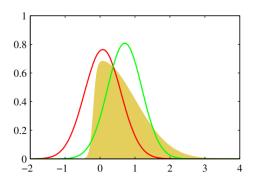
where

$$\mathcal{L}(q) = \int q(\mathbf{z}) \log \left\{ \frac{p(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})} \right\} d\mathbf{z} \quad \text{(lower bound for } \log p(\mathbf{x})\text{)}$$

$$\mathit{KL}(q||p) = -\int q(\mathbf{z}) \log \left\{ \frac{p(\mathbf{z}|\mathbf{x})}{q(\mathbf{z})} \right\} d\mathbf{z} \quad \text{(KL-divergence btw q and p)}.$$

- ullet Goal: to maximize $\mathcal{L}(q)$ or, equivalently, to minimize the $\mathit{KL}(q||p)$.
- ullet Note: $\mathcal{L}(q)$ is also called the 'ELBO' (evidence lower bound)

Variational Gaussian approximation



• Figure shows approximation of the original distribution (yellow) with a Gaussian at the mode (red, Laplace) or with a Gaussian that minimizes the KL-divergence (green).

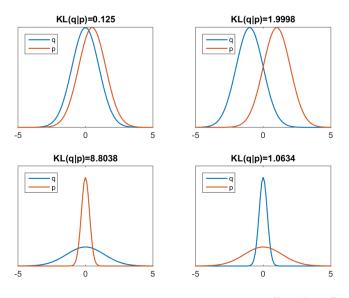
Kullback-Leibler divergence

• **KL-divergence**. For two distributions q(x) and p(x)

$$KL(q|p) \equiv \int_{x} q(x) \log \frac{q(x)}{p(x)} dx$$

- $KL(q|p) \ge 0$ (follows from Jensen's inequality)
- KL(q|p) = 0 if and only if q = p
- KL-divergence between q and p can be thought of as a 'distance' of p from q. However, $KL(q|p) \neq KL(p|q)$. Hence it's rather called 'divergence'.

Kullback-Leibler divergence - Example



Mean-field variational Bayes

 Mean-field variational Bayes: assume that the approximating distribution q factorizes according to M disjoint groups of z

$$q(\mathbf{z}) = \prod_{i=1}^M q_i(\mathbf{z}_i)$$

- Distributions $q(\mathbf{z}_i)$ are called **factors**
- NB: above ${\bf z}$ is a generic notation for all unobserved variables in the model, and comprises both parameters (e.g. π , Λ , μ in a GMM) and latent variables (e.g. cluster labels ${\bf z}$ in a GMM!)
- For example, assuming:

$$q(\mathbf{z}, \pi, \Lambda, \mu) = q(\mathbf{z})q(\pi, \Lambda, \mu)$$

leads to a tractable solution for the posterior $p(\mathbf{z}, \pi, \Lambda, \mu | \mathbf{x})$ of a GMM.

Mean-field variational Bayes updates

- Assume some current values for all factors $q_i(\mathbf{z}_i)$
- It can be shown (p. 465-466) that by keeping other factors $q_i(z_i)$ fixed for $i \neq j$, the lower bound $\mathcal{L}(q)$ of $\log p(\mathbf{x})$ can be maximized (or $\mathit{KL}(q||p)$ minimized) by updating factor $q_i(\mathbf{z}_j)$ using

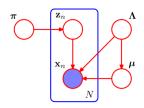
$$\log q_j^*(\mathbf{z}_j) = E_{q(\mathbf{z}_{\setminus j})}[\log p(\mathbf{x}, \mathbf{z})] + \mathrm{const.}$$

- ullet Here $q(\mathbf{z}_{\setminus j})$ is a short-hand for $\prod_{i
 eq j} q_i(\mathbf{z}_i)$
- Important formula, as it forms the basis of deriving VB algorithms using factorized distributions
- Algorithm: update each factor in turn until convergence

Mean-field VB in practice (1/2)

- Assume a factorization, e.g., $q(\mathbf{z}, \pi, \Lambda, \mu) = q(\mathbf{z})q(\pi)q(\Lambda, \mu)$
- Write the log of the joint distribution

$$\begin{split} \log p(\mathbf{x}, \mathbf{z}, \boldsymbol{\mu}, \boldsymbol{\Lambda}, \boldsymbol{\pi}) &= \log p(\mathbf{x} | \mathbf{z}, \boldsymbol{\Lambda}, \boldsymbol{\mu}) + \log p(\boldsymbol{\mu} | \boldsymbol{\Lambda}) \\ &+ \log p(\boldsymbol{z} | \boldsymbol{\pi}) + \log p(\boldsymbol{\Lambda}) + \log p(\boldsymbol{\pi}) \end{split}$$



Mean-field VB in practice (2/2)

• When updating a certain factor, for example $q(\mathbf{z})$, we identify terms in the log of the joint distribution that depend on \mathbf{z} , and compute their expectation over other unobserved variables

$$\begin{split} \log q^*(\mathbf{z}) &= E_{q(\pi)q(\Lambda,\mu)} \left[\log p(\mathbf{x},\mathbf{z},\mu,\Lambda,\pi) \right] + \mathrm{const} \\ &= E_{q(\Lambda,\mu)} \left[\log p(\mathbf{x}|\mathbf{z},\Lambda,\mu) \right] + E_{q(\pi)} \left[\log p(\mathbf{z}|\pi) \right] + \mathrm{const} \end{split}$$

ullet Finally, we exponentiate and normalize to give the updated $q^*(\mathbf{z})$

$$q^*(\mathbf{z}) = \frac{\exp\left(E_{\pi,\Lambda,\mu}\left[\log p(\mathbf{x},\mathbf{z},\mu,\Lambda,\pi)\right]\right)}{\int \exp\left(E_{\pi,\Lambda,\mu}\left[\log p(\mathbf{x},\mathbf{z},\mu,\Lambda,\pi)\right]\right)d\mathbf{z}}$$

If conjugate priors are used, this belongs to the same family as the prior.

ullet Notation: instead of $E_{q(\pi,\Lambda,\mu)}$ we may simply use $E_{\pi,\Lambda,\mu}$ or just E.

Idea of derivation of the mean-field VB update*

• Assume just two hidden variables z_1 and z_2 and $q(z_1, z_2) = q_1(z_1)q_2(z_2)$. Then

$$\mathcal{L}(q) = \int q(\mathbf{z}) \log rac{p(x,\mathbf{z})}{q(\mathbf{z})} d\mathbf{z} = \int q_1(z_1) q_2(z_2) \log rac{p(x,z_1,z_2)}{q_1(z_1) q_2(z_2)} dz_1 dz_2$$
 $= \cdots = \int q_1(z_1) \log rac{\widetilde{p}(x,z_1)}{q_1(z_1)} dz_1 + \mathrm{const} = -\mathit{KL}(q_1,\widetilde{p}) + \mathrm{const},$

where $\widetilde{p}(x,z_1)$ is a distribution defined by

$$\log \widetilde{p}(x, z_1) = E_{q_2(z_2)}[\log p(x, z_1, z_2)] + \text{const.}$$

• We see that $\mathcal{L}(q)$ is maximized w.r.t. to q_1 when $\mathit{KL}(q_1,\widetilde{p})$ is minimized, i.e. when

$$q_1(z_1)=\widetilde{p}(x,z_1).$$

Simple example

• Model: assume that we have observations $\mathbf{x} = (x_1, \dots, x_N)$ s.t.

$$p(x_n|\theta,\tau) = (1-\tau)N(x_n|0,1) + \tau N(x_n|\theta,1)$$

Prior:

$$au \sim \textit{Beta}(lpha_0, lpha_0) \qquad heta \sim \textit{N}(0, eta_0^{-1})$$

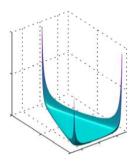
Formulation using latent variables $\mathbf{z} = (z_1, \dots, z_n)$:

$$p(\mathbf{z}|\tau) = \prod_{n=1}^{N} \tau^{z_{n2}} (1-\tau)^{z_{n1}}$$

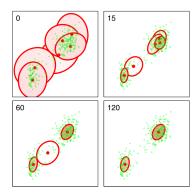
$$p(\mathbf{x}|\mathbf{z},\theta) = \prod_{n=1}^{N} N(x_n|0,1)^{z_{n1}} N(x_n|\theta,1)^{z_{n2}}$$

• simple_vb_example.pdf, and the next exercise.

Mean-field VB for the general GMM*

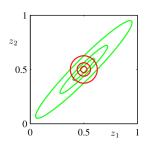


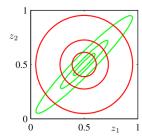
Bishop, Fig 2.5



- Dirichlet $(\pi|\alpha_0)$ prior on mixture coefficients with $\alpha_0 < 1$ favors sparse solutions \rightarrow some components remain empty, with corresponding parameters μ_k , Λ_k following prior distributions
- Avoids overfitting and singularities present in the EM algorithm.

Properties of factorized approximations (1/2)

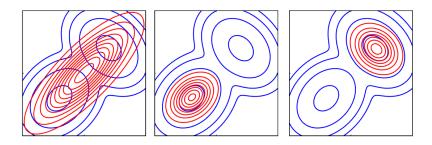




- Green: $p(\mathbf{z}|\mathbf{x})$, red: $q(\mathbf{z})$
- ullet Left: q that minimizes $\mathit{KL}(q||p)$
- ullet Right: q that minimizes $\mathit{KL}(p||q)$

 \rightarrow variational approximation (left) underestimates uncertainty.

Properties of factorized approximations (2/2)



- Blue: $p(\mathbf{z}|\mathbf{x})$, red: $q(\mathbf{z})$
- **Left**: q that minimizes KL(p||q)
- Center: q represents a local minimum of $\mathit{KL}(q||p)$
- ullet Right: q represents another local minimum of $\mathit{KL}(q||p)$

→variational approximation usually captures only a single mode.

Important points

- Variational Bayes aims to find a tractable approximation $q(\mathbf{z})$ for the posterior distribution $p(\mathbf{z}|\mathbf{x})$.
- $q(\mathbf{z})$ is found by maximizing the ELBO $\mathcal{L}(q)$ or, equivalently, by minimizing KL(q||p).
- Mean-field VB: if $q(\mathbf{z}) = \prod_{i=1}^M q_i(\mathbf{z}_i)$, factor $q_j(\mathbf{z}_j)$ can be updated using

$$\log q_j^*(\mathbf{z}_j) = E_{q(\mathbf{z}_{\setminus j})} \left[\log p(\mathbf{x}, \mathbf{z})
ight] + \mathrm{const.}$$

 Variational approximation for a fully Bayesian model with prior distributions avoids some of the problems related to the ML estimation of the GMM (overfitting, singularities).