Advanced probabilistic methods Lecture 7: Model selection

Pekka Marttinen

Aalto University

March, 2021

Lecture 7 overview

- Bayesian model selection
- marginal likelihood
- BIC, Laplace approximation
- VB lower bound (ELBO)
- Predictive model selection
- AIC, (DIC, WAIC, etc.)
- Cross-validation
- Lecture based on (suggested reading):
- Barber: Ch. 12 (Bayesian model selection)
- simple_elbo.pdf (how to derive the ELBO for the simple model analytically)
- For predictive model selection: Hastie et al. The Elements of Statistical Learning, (available at http://statweb.stanford.edu/~ tibs/ElemStatLearn/): Ch. 7.1, 7.2, 7.4, 7.5, 7.10 (for AIC and CV)

Model selection

- Possible goal may be to learn
- the most useful model, for example the one that best predicts future observations
- the most probable model, for example when comparing between scientific hypotheses and different hypotheses correspond to different models

Bayesian model selection

- Consider m models M_{i} with parameters θ_{i} and associated priors,

$$
p\left(x, \theta_{i} \mid M_{i}\right)=p\left(x \mid \theta_{i}, M_{i}\right) p\left(\theta_{i} \mid M_{i}\right), \quad i \in 1, \ldots, m
$$

- We can compute the model posterior probabilities

$$
p\left(M_{i} \mid x\right)=\frac{p\left(x \mid M_{i}\right) p\left(M_{i}\right)}{p(x)}
$$

where

$$
\begin{aligned}
p\left(x \mid M_{i}\right) & =\int p\left(x \mid \theta_{i}, M_{i}\right) p\left(\theta_{i} \mid M_{i}\right) d \theta_{i} \quad \text { and } \\
p(x) & =\sum_{i=1}^{m} p\left(x \mid M_{i}\right) p\left(M_{i}\right)
\end{aligned}
$$

Bayes factors

- For comparing two models, we compute the Bayes' factor

- Bayes factor is the ratio of marginal likelihoods $p\left(D \mid M_{i}\right)$ and it tells how much more seeing the data D has increased the probability of model M_{i} as opposed to model M_{j}.

Bayes factor example (1/3)

- Problem: given N throws of a coin, determine whether a coin is biased or unbiased.
- Let θ denote the probability of heads. The probability of observing h heads and $N-h$ tails in a sequence of N throws is

$$
p(H=h)=\binom{N}{h} \theta^{h}(1-\theta)^{N-h}
$$

- The difference between models is encoded in the prior distribution of θ (Left: fair coin, Right: biased coin)

Bayes factor example (2/3)

- $M_{f a i r}$ ('Coin is fair') corresponds to prior

$$
\begin{aligned}
p\left(\theta \mid M_{\text {fair }}\right) & =\operatorname{Beta}(\theta \mid a, b) \\
& =B(a, b)^{-1} \theta^{a-1}(1-\theta)^{b-1}
\end{aligned}
$$

where $a=b=50$.

- Probability of h heads in N throws of the coin is given by

$$
\begin{aligned}
p\left(x \mid M_{\text {fair }}\right) & =\int p\left(x \mid \theta, M_{\text {fair }}\right) p\left(\theta \mid M_{\text {fair }}\right) d \theta \\
& =\binom{N}{h} B(a, b)^{-1} \int \theta^{h}(1-\theta)^{N-h} \theta^{a-1}(1-\theta)^{b-1} d \theta \\
& =\binom{N}{h} B(a, b)^{-1} \int \theta^{h+a-1}(1-\theta)^{N-h+b-1} d \theta \\
& =\binom{N}{h} B(a, b)^{-1} B(h+a, N-h+b)
\end{aligned}
$$

Bayes factor example (3/3)

- $M_{\text {biased }}$ ('Coin is biased') corresponds to assuming

$$
p\left(\theta \mid M_{2}\right)=0.5 \times \operatorname{Beta}(\theta \mid 3,10)+0.5 \times \operatorname{Beta}(\theta \mid 10,3)
$$

- We get

$$
p\left(x \mid M_{2}\right)=\frac{1}{2}\binom{N}{h}\left\{\frac{B(h+3, N-h+10)}{B(3,10)}+\frac{B(h+10, N-h+3)}{B(10,3)}\right\}
$$

- For example with $h=50$ and $N=70$, we get

$$
B F_{f a i r, b i a s e d}=\frac{p\left(x \mid M_{\text {fair }}\right)}{p\left(x \mid M_{\text {biased }}\right)}=0.087
$$

This indicates that if the models are a priori equally likely, after seeing the data, $M_{\text {biased }}$ is about 11 times more probable than $M_{\text {fair }}$.

Laplace approximation for marginal likelihood*

- Laplace approximation for $p(x \mid M)$

$$
\log p(x \mid M) \approx \log p(x \mid \widehat{\theta}, M)+\log p(\widehat{\theta} \mid M)+\frac{D}{2} \log (2 \pi)-\frac{1}{2} \log \left|H_{\widehat{\theta}}\right|
$$

where

$$
\widehat{\theta}=\arg \max _{\theta} p(x \mid \theta, M) p(\theta \mid M)
$$

is the MAP estimate and $H_{\widehat{\theta}}$ is the Hessian (second derivative for univariate θ) of

$$
f(\theta)=-\log [p(x \mid \theta, M) p(\theta \mid M)]
$$

at $\widehat{\theta}$.

BIC approximation for marginal likelihood*

- BIC approximation ${ }^{1}$

$$
\operatorname{BIC}(M)=\log p(x \mid \widehat{\theta}, M)-\frac{D}{2} \log N
$$

is obtained from the Laplace approximation by assuming
$p(\theta)=$ const, $H \approx N I_{D}$, and $N \rightarrow \infty$.

- Note that we can compute the approximate Bayes factor using

$$
\mathrm{BF}_{12}=\frac{\exp \left(\operatorname{BIC}\left(M_{1}\right)\right)}{\exp \left(\operatorname{BIC}\left(M_{2}\right)\right)}
$$

or similarly by plugging in exponentiated Laplace approximation
(Laplace is better, both to be used with caution, especially with small N).

Bayesian model selection and Occam's razor

- When complexity of M increases, $p(x \mid \widehat{\theta}, M)$ always increases
- On the other hand, $p(x \mid M)$ is the highest for the simplest model that can explain the data (=Occam's razor principle)
- Left: illustration with model complexity increasing from M_{1} to M_{3}
- Right: $p(x \mid K)$ for the number K of GMM components for the 'Old Faithful' data (approximated using the ELBO, see the next slides)

Bishop, Fig. 3.13

Bishop, Fig. 10.7

Variational lower bound (ELBO)

- The derivation of the VB algorithm was based on minimizing $K L(q \| p)$ in

$$
\log p(\mathbf{x})=\mathcal{L}(q)+K L(q \| p)
$$

- When conjugate priors and exponential family distributions are used, we can compute the variational lower bound $\mathcal{L}(q)$ directly

$$
\mathcal{L}(q)=\int q(\mathbf{z}) \log \left\{\frac{p(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})}\right\} d \mathbf{z}
$$

- Computing $\mathcal{L}(q)$ gives:
(1) alternative way to define the factor updates by maximizing $\mathcal{L}(q)$.
(2) simple check of the VB algorithm - $\mathcal{L}(q)$ should never decrease.
(3) criterion to monitor convergence.
(1) an estimate of $\log p(x)$ to be used in model selection

Simple example: computing the ELBO

- The model:

$$
p\left(x_{n} \mid \theta, \tau\right)=(1-\tau) N\left(x_{n} \mid 0,1\right)+\tau N\left(x_{n} \mid \theta, 1\right), n=1, \ldots, N .
$$

Prior:

$$
\tau \sim \operatorname{Beta}\left(\alpha_{0}, \alpha_{0}\right) \quad \theta \sim N\left(0, \beta_{0}^{-1}\right)
$$

- After factorizing $\log p(\mathbf{x}, \mathbf{z}, \tau, \theta)$, ELBO can be written as:

$$
\begin{aligned}
\mathcal{L}(q) & =E_{q(\tau)}[\log p(\tau)]+E_{q(\theta)}[\log p(\theta)]+E_{q(\mathbf{z}) q(\tau)}[\log p(\mathbf{z} \mid \tau)] \\
& +E_{q(\mathbf{z}) q(\theta)}[\log p(\mathbf{x} \mid \mathbf{z}, \theta)]-E_{q(\mathbf{z})}[\log q(\mathbf{z})]-E_{q(\tau)}[\log q(\tau)] \\
& -E_{q(\theta)}[\log q(\theta)] .
\end{aligned}
$$

- All of the terms have analytic form (see simple_elbo.pdf and the next exercise).

Using the ELBO for model selection

- The ELBO \mathcal{L}_{K} for a GMM with K components gives a lower bound of $\log p_{K}(x)$, where $p_{K}(x)$ is the marginal likelihood.
- However, VB approximates only a single mode and a GMM with K components has K ! equivalent modes (label switching). Hence, we add $\log (K!)$ to \mathcal{L}_{K} when doing model selection (right).

Bishop, Fig. 2.21

Bishop, Fig 10.7

Selecting models for prediction, concepts ($1 / 2$)

- X : input variables, Y : target variable, $\widehat{f}(X)$: prediction model estimated from a training data \mathcal{T}.
- Loss function measures the (lack of) accuracy of prediction
- Squared loss

$$
L(Y, \widehat{f}(X))=(Y-\widehat{f}(X))^{2}
$$

- Loss based on log-likelihood

$$
L(Y, \theta(X))=-2 \log p(Y \mid \theta(X))
$$

where $\theta(X)$ is a parameter of the prediction model.

Selecting models for prediction, concepts (2/2)

$$
\operatorname{Err}_{\mathcal{T}}=E[L(Y, \widehat{f}(X)) \mid \mathcal{T}] \quad \text { (test/prediction/generalization error) }
$$

$$
\overline{\mathrm{err}}=\frac{1}{N} \sum_{i=1}^{N} L\left(y_{i}, \widehat{f}\left(x_{i}\right)\right) \quad \text { (training error) }
$$

Predictive model selection criteria

- Predictive model selection criteria aim to approximate expected prediction accuracy in a new data set, either
- analytically (e.g. AIC, DIC, WAIC), or
- by efficient sample re-use (e.g. cross-validation)
- Hence, they aim to find a model that is suitable for prediction.
- Asymptotically, AIC and leave-one-out cross validation are equivalent.

Example (validation vs. test error)*

- Data $\left(\mathbf{x}_{i}, y_{i}\right)$ is simulated using $y_{i}=\sum_{i=1}^{30} w_{i} x_{i}+\epsilon_{i}$, where $w_{i} \sim U(-1,1)$, and $\epsilon_{i} \sim N\left(0,0.1^{2}\right)$.
- 500 candidate models created by randomly selecting 10 covariates out of 30 , and fitting a linear model with the selected covariates.
- $n_{\text {Train }}=300$ and $n_{\text {Valid }}=60$. Validation MSEs for different models:

- Question: What is your best guess for the test set MSE for the best model?

AIC, basic idea*

- It can be shown that for large N

$$
-2 \cdot E[\log p(\widetilde{y} \mid \widehat{\theta})] \approx-\frac{2}{N} \log p(y \mid \widehat{\theta})+2 \cdot \frac{d}{N}
$$

where \widetilde{y} is an unobserved future observation and

$$
\log p(y \mid \widehat{\theta})=\sum_{i=1}^{N} \log p\left(y_{i} \mid \widehat{\theta}\right)
$$

is the log-likelihood.

- This gives rise to:

$$
\mathrm{AIC}=-\frac{2}{N} \log p(y \mid \widehat{\theta})+2 \cdot \frac{d}{N}
$$

(the smallest AIC is the best)

- Main point: AIC is one possible analytical approximation for the expected prediction accuracy measured using log probability of future data ${ }^{2}$.
${ }^{2}$ For more Bayesian variants, see, e.g., Gelman et al. Stat. Comput.

Cross-Validation (CV) ${ }^{3}$, basic idea*

		3	4	5
Train	Train	Validation	Train	Train

- Let $\kappa:\{1, \ldots, N\} \longmapsto\{1, \ldots, K\}$ denotes the fold to which observation i belongs. Then

$$
C V(\widehat{f})=\frac{1}{N} \sum_{i=1}^{N} L\left(y_{i}, \widehat{f}^{-\kappa(i)}\left(x_{i}\right)\right)
$$

where $\widehat{f}^{-\kappa(i)}$ is the predictor model trained without fold $\kappa(i)$.

- CV yields an estimate of the expected prediction error $E[L(Y, \widehat{f}(X))]$.
${ }^{3}$ See, e.g., Vehtari et al., Stat. Comput. (2017).

A wrong way to do cross-validation*

- A (wrong!) strategy for building a classifier with a large number of predictors
(1) Pre-screening of the predictors: find a subset of predictors with strong univariate correlation with the class label
(2) Using the set of predictors from pre-screening, build a multivariate classifier
(3) Use cross-validation to estimate the unknown tuning parameter and to estimate the prediction error of the final model
- Question: what's the problem?

The correct way*

- The correct way for building a classifier with a large number of predictors
(1) Divide the samples into K folds
(2) For each fold $k=1, \ldots, K$
- Find a subset of predictors with strong univariate correlation with the class labels, using all samples except those in fold k.
- Build a multivariate classifier using this set of predictors (excluding fold k)
- Use the classifier to predict the class labels for the samples in fold k
- The class labels of the test fold should not be used at any point before predicting them in CV!

Remarks

- Bayesian model selection
- asymptotically consistent
- suitable when trying to find the "true" model from a set of distinct interpretable alternatives
- heavy penalty on complexity \rightarrow may produce too sparse models for prediction
- may be sensitive to the prior on the parameters
- Predictive model selection
- no consistency guarantees
- no need to assume a true model
- less penalty for model complexity \rightarrow more complex models that may be suitable for prediction
- In practice people seem to use the two ways interchangeably for both goals: prediction and comparing hypotheses.

Model selection, summary

- There are two different goals for model selection: learning the correct model or selecting a model for prediction
- The Bayesian model selection gives probabilities of different models and may be more suitable if the goal is to learn the correct model.
- Predictive model selection criteria may be better if the goal is to use the model for prediction.
- BIC approximates Bayesian model selection, AIC and CV are related to predictive model selection.
- ELBO can be used to approximate the logarithm of the marginal likelihood $\log p_{m}(x)$ for model m, which can be used for Bayesian model selection.

