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Recall that variational inference is based on the decomposition

log p(x) = L(q) +KL(q|p),

where q(Z) is any approximation to the posterior distribution p(Z|X) of unobserved variables Z in the
model, given observed variables X. The goal of the variational inference algorithm is to maximize the
evidence lower bound (ELBO) L(q), or equivalently minimize the KL-divergence KL(q|p) between the
approximation and the true posterior. Here we show how to compute the ELBO for the ’simple model’
derived earlier1 . Briefly, the model is

p(xn|θ, τ) = (1− τ)N(xn|0, 1) + τN(xn|θ, 1), n = 1, . . . , N.

The latent variable representation is given by

p(x|z, θ) =

N∏
n=1

N(xn|0, 1)zn1N(xn|θ, 1)zn2 , (1)

and

p(z|τ) =

N∏
n=1

τzn2(1− τ)zn1 . (2)

Priors are specified as follows:

p(τ) = Beta(τ |α0, α0) ∝ τα0−1(1− τ)α0−1

p(θ) = N(θ|0, β−10 ) ∝ exp

(
−β0

2
θ2
)
.

The logarithm of the joint distribution can be written as:

log p(x, z, τ, θ) = log p(τ) + log p(θ) + log p(z|τ) + log p(x|z, θ). (3)

We assume the mean-field approximation

p(z, τ, θ|x) ≈ q(τ)q(θ)
∏
nq(zn). (4)

Assume that currently we have factors

q(zn|rn1, rn2) = Categorical(zn|rn1, rn2) = rzn1n1 r
zn2
n2 , (5)

q(τ) = Beta(τ |ατ , βτ ), (6)

q(θ) = N(θ|m2, β
−1
2 ), (7)

where rn1, rn2, n = 1, . . . , N, ατ , βτ , m2, and β2 are so-called variational parameters, i.e. parameters that
specify the exact distribution of the factor. Previously, in document simple_vb_example.pdf, we derived
formulas for updating the the variational parameters of any factor conditionally on the other factors.
The general formula for the ELBO is given by

L(q) =
∫
q(Z) log

p(X,Z)

q(Z)
dZ

= Eq[log p(X,Z)]− Eq[log q(Z)], (8)

where Z is a generic notation that includes all unobservables. It will be left as an exercise to show that
the ELBO can be written as:

L(q) = Eq(τ)[log p(τ)] + Eq(θ)[log p(θ)] + Eq(z)q(τ)[log p(z|τ)]

+ Eq(z)q(θ)[log p(x|z, θ)]− Eq(z)[log q(z)]− Eq(τ)[log q(τ)]

− Eq(θ)[log q(θ)]. (9)

1The derivation of the ELBO for the general GMM case can be found in Bishop’s book, Section 10.2.2.
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When conjugate priors are used, as is the case with the simple model, all seven terms in formula (9) can
be computed analytically. Below we consider each of these terms in turn. The ELBO can then be
computed simply by plugging each of the derived terms into Equation (9). In these derivations
we will occasionally discard some terms that do not depend on the variational parameters, as our purpose
of deriving the ELBO is to monitor the convergence of the VB algorithm and those terms are constant
across the iterations.

1st term in (9):

Eq(τ)[log p(τ)] = Eq(τ) [(α0 − 1) log τ + (α0 − 1) log(1− τ)]

= (α0 − 1)Eq(τ)[log τ ] + (α0 − 1)Eq(τ)[log(1− τ)]

= (α0 − 1)[ψ(ατ )− ψ(αt + βτ )] + (α0 − 1)[ψ(βτ )− ψ(αt + βτ )].

The last line above followed from the known formula for Eq(τ)[log τ ] when q(τ) has the Beta distribution
specified in Equation (6).

2nd term in (9):

Eq(θ) [log p(θ)] = . . . (exercise)

= −β0
2

(
β−12 +m2

2

)
.

The last line followed directly from the normal distribution (7) for θ.

3rd term in (9):

Eq(z)q(τ) [log p(z|τ)] =

N∑
n=1

Eq(zn)q(τ)[log p(zn|τ)]

=

N∑
n=1

Eq(zn)q(τ)[zn2 log τ + zn1 log(1− τ)]

=

N∑
n=1

{
Eq(zn)[zn2]Eq(τ)[log τ ] + Eq(zn)[zn1]Eq(τ)[log(1− τ)]

}
=

N∑
n=1

{rn2[ψ(ατ )− ψ(αt + βτ )] + rn1[ψ(βτ )− ψ(ατ + βτ )]} .

4th term in (9):

Eq(z)q(θ) [log p(x|z, θ)] = . . . (exercise)

= −N
2

log(2π)− 1

2

N∑
n=1

rn1x
2
n −

1

2

N∑
n=1

rn2
{

(xn −m2)
2 + β−12 ]

}
.

5th term in (9):

Eq(z)[log q(z)] =

N∑
n=1

Eq(zn) [zn1 log rn1 + zn2 log rn2]

=

N∑
n=1

rn1 log rn1 + rn2 log rn2 .
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6th term in (9):

Eq(τ) [log q(τ)] = log
Γ(ατ + βτ )

Γ(ατ )Γ(βτ )
+ (ατ − 1)ψ(ατ ) + (βτ − 1)ψ(βτ )− (ατ + βτ − 2)ψ(ατ + βτ ).

This is just the negative entropy of the Beta(ατ , βτ ) distribution (see Wikipedia).

7th term in (9):

Eq(θ)[log q(θ)] = . . . (exercise)
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