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Topics, Lecture #2

« Learning objectives of Lecture #2
 Location-based planning overview —two methods
 Production System cost

 Production System risk

« Buffers in LBMS and takt

« Planning examples
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Intended learning objectives for this
lecture

« ILO 2: Students can compare and contrast the similarities and differences of
different production planning and control methods

- ILO emphasized for location-based planning systems
« ILO 3: Students can calculate the production system cost of a schedule
- ILO introduced: theory of production system cost

« ILO 4: Students can explain the factors related to production system risk of a
schedule

- ILO emphasized

« ILO 5: Students can explain the significance of work and labor flow and how flow
can be achieved in construction

- ILO introduced (planning)
« ILO 9: Students can analyze the quality of a location-based schedule
- ILO introduced

School of Engineering 1/5/2022
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Two location-based systems — with
similarities and differences

Location-based Takt planning &
management system / control
LBMS
Planning concepts Locations, tasks, Takt areas, takt process,
production rates takt time
Buffers Time buffers preferred Capacity buffers
preferred
Location / area size Generally larger As small as possible
Durations Calculated and vary in Takt time fixed
locations depending on
guantities
Emphasis Operations flow Process flow
Repeatability Not required but Very beneficial
beneficial _
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LBMS technical system

Planning

SyStem
. Location Breakdown i
. Ouantities Controlling
«  Duration calculation SyStem

. Layered logic

. LBMS algorithm (CPM+)
. Production system cost
. Production system risk

. Progress data
. Performance metrics
. Detailed planning
. Forecasting
Control actions
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Some LBS guidelines (LBMS)

 Locations must be physical and clearly defined

« Top level locations

 Structurally independent sections (building / part of building) that
can be completed as one entity

« Separate buildings or separated by module lines / joints

« Lowest level locations

« Small areas where only one space-critical task happens at the
same time

Aalto University Department of Civil Engineering
A School of Engineering 1/5/2022

7



Ta.kt areaS Binninger et al. 2017:

Technical takt planning and
takt control in construction

« 1. Pick one functional area

Office

« 2. Define takt areas for one functional
area

SSU Office

Figure 3: Input from Mechanical Trade

- 3. Preferably repeating areas, in using Work Chunks of 2-Day Takt,

Sequenced Orange, Blue, then Green

Tommelein, I. D. 2017, 'Collaborative Takt Time Planning of Non-
Repetitive Work' In:, 25th Annual Conference of the International

complex cases based on work density

Group for Lean Construction. Heraklion, Greece, 9-12 Jul 2017.
pp 745-752
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Example locations (takt project)
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Quantities

« Estimated by location
« Manually — time consuming
« BIM-based — enables automated updates of quantities

« Related quantity items can form a task / takt process IF the
work

e Can be done at the same time in one location
« Has the same logic outside the task

« Can be completely finished in one location before moving to the
next location

Aalto University Department of Civil Engineering
A School of Engineering 1/5/2022
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Location-based guantities

Same crew performs
all items

Man-hours/unit
Code Item
365116  Fit prefabricated balcony post units
355125  Install room-size/square panels
335107 Install precast concrete floor slabs
345115  Install prefabricated staircases
355115 Install load-bearing room-size/square panels
335108 Install prefabricated beams
365135  Fit prefabricated balcony roof units
355145  Install thin-shell panels
365125  Fit prefabricated balcony floor units
325125  Top layer finishing to concrete floor slabs
325115 Install precast dividing walls
235150 Install precast concrete hollow core slabs

Total man-hours

Section:

Floor:

™ G

2,25
1,8
0,6

1,98
1,8

1

0,62
1,8

1,85

1,84

1,84

0,61

Unit
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO



What Is the right labor consumption
rate?

Total time (T4)

Effective time (T3)

Method time (T2)

Basic time (T1) Non-productive time (TL1) Non-productive time (TL2) Non-productive time (TL3)

« "Effective time” 10-20% more than Method time

* Includes "normal” disruptions of less than 1 hr
« Total time T4, 10-30% more than Effective time
« =alot of waste in productivity estimates!

Source: Koskenvesa, Koskela et al. (2010)

Aalto University Department of Civil Engineering
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LBMS: quantities to duration

Section Floor 2005
Feb  [Mar [Apr May Jaun
8 |9 [10 T11 [12 [13 14 [15 [16 [17 18 19 [22 [23
Roof
\ 71 man-hours
Building A 3
2
oS
%'é(\
1 O
é‘O‘
&
N~X<</
Reet [ —
117 man-hours
4
Building B 3
2

A
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* Defined position for any moment in time
* Production order (workflow)

* Hauling distances and directions

* Relocating resources

* Production halts

* Risk of overlapping tasks

Schedule mode

Main road line - Unfiltered view

DynaRoad 5.0.3

Registration information: Johan Appelgvist [DynaRoad] =
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In takt: takt time

fixed

Work densities calculated in the same way as LBMS
Every process should fit the takt time

Takt levelling:
- shifting variable work steps
- variation of manpower
- duplication of wagons
- capacity buffer, etc.

TaE

118

3 4 5 6

Time I >

division of work

time-related

1 2

Takt: Combine the work packages best for determined takt time &
area (in LBMS only tasks of the same subcontractors combined)

r
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LBMS schedule optimization

« Aligning the schedule to achieve parallel flowlines
« Changing manpower
« Moving work steps from a task to another task

« Selecting whether tasks should be continuous or
discontinuous

Department of Civil Engineering

Aalto University
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Flowline Diagram — Overhead MEP
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Location (Floors)

Flowline Diagram

2011 2012
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Flowline Diagram

2011

2012
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Location (Floors)

Flowline Diagram — Continuous Flow

2011 2012
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Flowline Diagram — Continuous Flow

2011 2012
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Flowline Diagram — Continuous Flow
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Location (Floors)

Flowline Diagram — Continuous Flow

2011 2012
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Location (Floors)

Flowline Diagram — Continuous Flow
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Location (Floors)

Flowline Diagram — Optimization
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Location (Floors)

Flowline Diagram — Optimization
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Flowline Diagram — Optimization
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Location (Floors)

Flowline Diagram — Optimization
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Takt optimization

Takt dimensions can be related through a formula emaetal. 1960

Binninger et al. 2018)

(Number of takt areas + Number of wagons — 1) * takt time = Lead time

Smaller takt and more takt areas

+ Reduce lead time
+ Enables better control and transparency as the trades has to work closer together

- More things to control
- Becomes chaotic if external variance is high

Aalto University
School of Engineering



Takt optimization —example of cycle
times

(Number of takt areas + Number of wagons — 1) * takt time = Lead time

Normal 5day schedule: (5 + 10 -1)* 5 days = 14 weeks —_____

2 day takt: (12,5 + 10 -1)* 2 days = 8,6 weeks (-39%)
(takt time reduced by 60%)

1 day takt: (25 + 10 -1)* 1 day = 6,8 weeks (-51%)

(takt time reduced by 50%) _-h--"'--____‘

4hr takt: (50 + 10 -1)* 4 hours = 5,9 weeks (-58%)
(takt time reduced by 50%)

Aalto University
School of Engineering



Takt — finalizing the schedule

« Optimization done already when deciding takt areas, takt
time and leveling

* Final steps easy:
« Repeat the same process for all functional areas

O -]

 Finish the schedule by adding areas outside of takt,
define backlog areas

« Fit the schedule to meet the fundamental flow and
milestones (e.g. by iterating takt time and location
size)

’ S1 | S2 S3 ’ Available for customer
’ S11/1S21183 ’ Available for customer
& s 0 S e

School of Engineering 05/01/2022
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Production system cost

Production system costs are functions of the schedule
 Direct labor costs
* Overhead costs

Measures the efficiency of the plan
 Better schedule — lower overall production system costs

Motivator for trade contractors to follow the plan

 Trade contractors pay for direct labor costs and any improvement in
production system cost affects their bottom line

Production system cost is a measure of operations flow —
emphasized in LBMS

School of Engineering 1/5/2022
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Production system cost components
 Working time

* Mobilization / demobilization

+  Waiting time

+  Moving around

+ Logistics

« Qverhead

Aalto University Department of Civil Engineering
A School of Engineering 1/5/2022
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[No [Dec [Feb [Mar
4 11 118 |25 |2 9 16 |23 |30 |8 13 120 |27 |4 11 118 125 |1 g 15 |22 |29 |5 e I e 12119 |2

Production system cost example

9 [16 [23 |

14 Waiting cost: 14

Red waiting hours = 802 hrs

Waiting cost = 802 hrs * $50 / hr = $40,100

B Medanical
A Aalto University Department of Civil Engineering

School of Engineering 1/5/2022
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Takt — paradox In production system
cost

« Although capacity buffers are used in takt, their labor costs
have not increased!

* In theory, we would expect an increase because the workers
have no work during capacity buffer —i.e. if everything goes
according to plan, workers of a five day takt would leave on
Thursday (20% capacity buffer)

 Possible explanations:
« Contractors are flexibly adjusting workforce
« Less waste in the process (Lecture #5)

Aalto University Department of Civil Engineering
A School of Engineering 05/01/2022
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Production system risk

« Construction has high variability

* Most of the variability is coming from Design issues
external issues (70%) Material logistics
, . Previous tasks
« Worker skills / work methods explain a small Weather
amount of variability (30%) Resources

C et : : Communication
« Variability can be analyzed with risk

analysis. LBMS divides variability to:
« Variability in start dates TVETEv—

 Variability in durations Skill differences
Standardization

 Variability in productivity
 Variability in resource availability Optimum

ey eqe productivity
 Variability caused by return delays

Aalto University Department of Civil Engineering
A School of Engineering 1/5/2022
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2012

earlier but was delayed by

Task 2 could have started
task 1 (red dot)

Task 1 started late
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Variability in durations

Area 2012
Mar Apr
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Variability in productivity

Area 2012
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Variability of resource availability
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Variability caused by return delays
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Buffers to protect against risk —
capacity buffer

If variability / risks cannot be removed, buffers are needed

CAPACITY BUFFER is one way of buffering
« Plan with fewer resources than are available for the project

OR
« Plan with lower production rate

’Buffer resources” can work on non-critical tasks

Potential problem: setting goals low may result in low
production (Parkinson’s law)

Aalto University Department of Civil Engineering
A School of Engineering 1/5/2022
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Different types of buffers

« LBMS — primarily time buffer | /1 / /

A

me
buffers

~_

AT

« Takt — primarily capacity buffer .
and workable backlogs




Planning example #1
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Model-based Scheduling - 20 %

duration compression
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Planning example (Olivieri et al. 2018)
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Thank you
Questions &
Comments




