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Learning outcomes: conditional descriptive statistics

• After this lecture you understand

1 the meaning of central concepts for conditional descriptive statistics of
a variable,

2 how to characterize the conditional distributions,

3 how to characterize distributions of more than one variable more
generally, and

4 why conditional descriptive statistics are a first step towards causal
analysis.
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Learning outcomes: random sampling and estimation of
the mean
• By the end of the lecture, you

5 know what random sampling means.

6 appreciate the difference between population and sample.

7 understand the concept of independently and identically
distributed.

8 understand why the sample mean is (almost) never equal to the
population mean, but is correct on average.

9 know what an estimator is.

10 know what an estimate is.

11 understand the concepts of bias, consistency and efficiency of an
estimator.

12 understand that an estimator is a random variable.

13 why the sample mean is BLUE.
Toivanen ECON-C4100 Lecture 2B 3 / 43



2. What are conditional descriptive statistics?

• Conditional descriptive statistics are characterized by the researcher
conditioning the information on Y on another variable X .

• Simple but important example: conditional mean.

E[Y |X = x ]

• Conditional descriptive statistics build on the joint distribution of two
or more variables.

• We will work with the case of two variables.
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From joint density to individual density

• How might we get the density function of X in the case of a observing
two (discrete) variables X and Y?

fX (x) =
∑

y
fX ,Y (x , y) (1)

• Such a density function is called the marginal distribution (of X).

• Notice that the marginal distribution takes into account all values of
X irrespective of what value Y takes (or, for all values of Y).

Toivanen ECON-C4100 Lecture 2B 5 / 43



From marginal to conditional distribution

• What if we are interested in what values Y gets, conditional on a
given value x of X?

• Then we are interested in a conditional distribution, or some function
of it.

• The conditional distribution of Y given X = x is defined as:

fY |X (y |x) = fX ,Y (x , y)
fX (x). (2)

• The conditional distribution is not defined when fX (x) = 0.
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Visualizing a joint distribution

• How to visualize your data consisting of two variables?

• A scatter-plot allows you to display all of your data.

• Example: our FLEED analysis sample.

• Let’s add age to our analysis.

• FLEED contains variable syntyv = YoB.
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Visualizing a joint distribution

• Let’s draw a scatter plot of income as a function of age.

Stata code
1 twoway s c a t t e r income age i f y e a r == 15 & income != . | | ///
2 l f i t income age i f y e a r == 15 & income != . , ///
3 x t i t l e ( ” age ” ) ///
4 g r a p h r e g i o n ( f c o l o r ( w h i t e ) )
5 graph e x p o r t ” i n c o m e a g e l i n e . pdf ” , r e p l a c e
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Scatterplot of income and age, analysis sample
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Conditional distributions

• How do the distributions of income at two different ages compare?
• Let’s start by comparing two density plots.

Stata code
1 twoway k d e n s i t y income i f y e a r == 15 & income != . & age == 27 | | ///
2 k d e n s i t y income i f y e a r == 15 & income != . & age == 55 , ///
3 x t i t l e ( ” income ” ) ///
4 l e g e n d ( l a b e l (1 ” age = 27 ” ) l a b e l (2 ” age = 55 ” ) ) ///
5 g r a p h r e g i o n ( f c o l o r ( w h i t e ) )
6 graph e x p o r t ” i n c o m e d i s t r a g e 2 7 a g e 5 5 . pdf ” , r e p l a c e

Toivanen ECON-C4100 Lecture 2B 10 / 43



Density plot of income for age = 27, age = 55
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What about the cdfs?

• Just like in the univariate case, the density plot is informative in its
own way, the cdf in another way.

Stata code
1 gen young = .
2 r e p l a c e young = 0 i f age == 27
3 r e p l a c e young = 1 i f age == 55
4 c d f p l o t income i f y e a r == 15 & income != . & young != . , by ( young ) ///
5 x t i t l e ( ” income ” ) ///
6 l e g e n d ( l a b e l (1 ” age = 27 ” ) l a b e l (2 ” age = 55 ” ) ) ///
7 g r a p h r e g i o n ( f c o l o r ( w h i t e ) )
8 graph e x p o r t ” i n c o m e c d f a g e 2 7 a g e 5 5 . pdf ” , r e p l a c e

Toivanen ECON-C4100 Lecture 2B 12 / 43



Cdf’s of income for age = 27, age = 55
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Cdf’s of income for age = 27, age = 55, income > 40 000
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Conditional means

1 A key concept in empirical economics is the conditional mean

E[Y |X = x ]

2 What would these look like in the analysis data on income, if X is
age?

Stata code
1 t a b s t a t income i f y e a r == 15 & income != . , s t a t ( mean ) by ( age )
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Income conditional on age

age mean income
15 411
20 8 346
27 23 565
30 24 011
40 31 430
50 30 082
55 27 411
60 26 407
70 19 344

Total 23 297
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Income conditional on age

• How does income develop with age?

• How much does age increase income in expectation, going from 30 to
40 years?

• Why might the mean income of 50+ be lower than that of those aged
40?

• Aside: at what level of accuracy should we report mean incomes (1
euro, 1 000 euros, ...)?
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Income conditional on age

• Imagine you wanted to study the causal effect of X on Y .
Conditional means allow you to study the correlation of them, forming
a first step towards causal analysis.

• Showing a table for all ages in the data leads to a very large table.

• How else could one display the incomes conditional on age?

Stata code
1 b y s o r t age : egen income age m = mean ( income ) i f y e a r == 15 & income != .
2 s c a t t e r income age m age i f y e a r == 15 & income != . & income age m != . , ///
3 x t i t l e ( ” age ” ) y t i t l e ( ” income ” ) ///
4 g r a p h r e g i o n ( f c o l o r ( w h i t e ) ) \ l i n e b r e a k
5 graph e x p o r t ” income age condmean . pdf ” , r e p l a c e

Toivanen ECON-C4100 Lecture 2B 18 / 43



Mean income conditional on age
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Correlation

• The best known descriptive statistic to characterize how two
variables’ values are aligned is correlation.

• To get to correlation, we need to first define the covariance.

• The covariance of Y and X is defined as

Cov(X ,Y ) = E[X − E(X )]E[Y − E(Y )]

= 1
n

n∑
i=1

(xi −
1
n

n∑
i=1

xi )(yi −
1
n

n∑
i=1

yi ),
(3)

• And the correlation of Y and X as

Cor(X ,Y ) = cov(X ,Y )/[sd(X )sd(Y )]. (4)
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2. Random sampling and estimation of the mean

• Example of random sampling: Finland conducted an experiment on
basic income in 2017 - 2018. (see Verho, J., Hämäläinen, K. &
Kanninen, O. (2021). Removing welfare traps: Employment responses
in the finnish basic income experiment. American Economic Journal:
Economic Policy, forthcoming).

• For the purposes of the basic income study, a random sample from
the target population was drawn.

• The important numbers for the random sampling were:
1 175 000 individuals in the (target) population.

2 2 000 individuals drawn from this population into the treatment group.
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Population and sample

• Population = those units that we are interested in (N).

• Sample = those units that we select out of the population, i.e., a
subset of the population (n).
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Random sampling

• Random sampling = each object in the population has the same
probability of being selected into the sample.

• Two key requirements: Each subject is
1 Independently distributed = any two objects are not informative about

each other.
I Y and X are independent iff FX ,Y (x , y) = FX (x)FY (y).

2 Identically distributed = before being chosen, each object is equal in
expectation.

I Y and X are identically distributed iff FX (x) = FY (x).

• Random variable = numerical summary of a random outcome.

Toivanen ECON-C4100 Lecture 2B 23 / 43



Random sampling - class room experiment

• We collected data on the height and gender of the students of this
course.

• I treat those students who answered as the population and take
random samples from it.

• Questions to be solved prior to commencing:

1 How many students to include in the sample?

2 How to choose them?
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Random sampling - class room experiment

• In our data N = 45.

• I chose n = 3, 5, 9, 15.

• In standard random sampling, I would have chosen n once and
selected one random sample of size n.

• Now I draw as many samples of size n as I can as long as I only
sample each individual only once.
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Random sampling - class room experiment

• Let’s first have a look at the population data.

• Notice that in usual circumstances we would not have access to these
data.

• It is the mean of the population height that we try to estimate
through our random sample(s).

Mean sd Median
177.0 10.8 179
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Estimating the mean of a population

• Estimator = some function of sample data.

• Estimate = the numerical value of the estimator, given a particular
sample.

• Notice that the sample mean (= Ȳ ) is not the same as the
population mean, but a natural estimator of it.

• Consequently, 177.0 is not our estimate of the sample mean (it is the
population mean, i.e., the target of our estimation); we are about to
study several such estimates.
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Estimating the mean of a population

• Two questions.

1 What are the properties of Ȳ ?

2 Why use Ȳ instead of some other estimator?
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Properties of Ȳ

• Ȳ is a random variable.

• Its properties are determined by the sampling distribution.

• The individual observations used to calculate Ȳ were chosen (iid)
randomly.

• What happens to Ȳ if you take another random sample (of size n)?

• The sampling distribution = the distribution of Ȳ over all possible
samples of size n.

• Example: All possible samples of size 9 (=all possible combinations of
9 students) from the population of students that submitted their
height information.
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Estimates of Ȳ based on n = 9

Group Population
1 2 3 4 5 Population mean

170.3 175.8 177.8 179.1 181.1 177.0
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Properties of Ȳ

• Sampling distribution:

1 all the values Ȳ can take

2 the probability of each of these values.

• The mean and variance of Ȳ are the mean and variance of its
sampling distribution.
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Properties of an estimator of µY

• NOTE: at the risk of confusion, I use the more general notation of µ̂Y
for the estimator on this slide, not Ȳ .

• The reason is that these properties apply generally.

• Let µ̂Y be an estimator of µY .

1 The bias of µ̂Y = E(µ̂Y )− µY .

2 µ̂Y is unbiased estimator of µY if E[µ̂Y ] = µY .

3 µ̂Y is a consistent estimate of µY if µ̂Y → µY when n → ∞.

4 let µ̃Y be another unbiased estimator of µY . Then µ̂Y is more
efficient than µ̃Y if var(µ̂Y ) < var(µ̃Y ).

• These properties of an estimator are generic, i.e., they apply to any
estimator.
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Properties of Ȳ

• Due to the Law of Large Numbers, Ȳ is both unbiased and
consistent.

• LLN requires that the sample is iid.
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Estimating the mean - class room experiment

• Let’s demonstrate consistency and the effect of sample size with our
height data.

• On the next slide are graphs of the distributions of our estimates of Ȳ
using different n.

• The vertical red line is the ”truth”, i.e., the population mean of 177.0.
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Estimating the mean - class room experiment
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Estimating the mean - class room experiment

• In each graph, each estimate is unbiased (= on average, they are
correct).

• As we increase the sample size from the upper left graph (n = 3) to
the lower right corner (n = 15) the Ȳ - estimates get closer to the
population mean.

• This is what consistency means.
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Properties of Ȳ

• How precise is Ȳ , and how does this depend on n?

• In other words, how large is the variance of Ȳ ?

• The Central Limit Theorem gives the answer.

• Hint: look at how close the estimates Ȳ are to the population mean
as we vary sample size n in the graph above.
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Central Limit Theorem

• The CLT

1 is about the distribution of the estimate of the mean.

2 applies no matter what the distribution of the underlying variable Y is.

• Examples: coin tosses (binary), age (only positive/integer)
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How the mean becomes normally distributed with large
enough samples

• Example: Draws from a Poisson distribution with an increasing n.

• Demonstration of how the distribution develops courtesy of Richard
Hennigan.
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Properties of Ȳ

• The CLT shows that the following hold:

• Suppose

1 the sample is iid.

2 E[Y ] = µY .

3 var(Y ) = σ2
Y <∞
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Properties of Ȳ

• Then, as n → ∞, the distribution of Ȳ becomes arbitrarily well
approximated by the normal distribution N(µY , σ

2
Ȳ ).

Notice that the variance of this normal distribution is decreasing in n.
• Then, as n → ∞, the distribution of

Ȳ − µY
σ2

Y

becomes arbitrarily well approximated by the standard normal
distribution N(0, 1).
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Ȳ as a least squares estimator

• Ȳ minimizes the sum of squared residuals:

minm

N∑
i=1

(yi −m)2 (5)

• Ȳ has smaller variance than all other unbiased linear estimators.

• → Ȳ is more efficient than other (linear) estimators.

• Ȳ is Best Linear Unbiased Estimator (BLUE).
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Testing the mean

• Imagine you want to test whether the Ȳ you estimated is different
from some value Y0.

• The t-statistic is given by

t = (Ȳ − Y0)/σ̂Y (6)

where σ̂Y = sY /
√

n is the estimated standard error of Ȳ .

• The distribution of t is appr. standard normal (why?).

• Notice how the denominator depends on n.

• This is the reason why a larger sample is beneficial in terms of testing
hypotheses, i.e., statistical significance.
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