ECON-C4100 - Capstone: Econometrics I

Lecture 3: Univariate regression

Otto Toivanen

Learning outcomes

- At the end of lectures 3 5, you
- 1 understand what one learns from a (univariate) regression analysis.
- 2 understand how to carry out a regression analysis.
- 3 appreciate the assumptions made in standard regression analysis.
- 4 are aware of the most common pitfalls in regression analysis.

The effect of *X* on *Y*

- At the end of lectures 3 5, you have an idea how to approach answering question such as the following:
- Does having a PhD (in science) help to innovate?
- Is website design A better than design B in terms of sales? By how much?
- Are branded pharmaceuticals more expensive than generic products?
- Are promotions of substitute products of the same firm at the same time effective?

Modeling

- Q1: what is the object you want to model ("explain")?
- Let's call this Y.
- Q2: what is the object whose effect on Y you want to understand?
- Let's call this X.

Modeling

- Where do these (decisions) come from?
- Theory.
- What is theory?
 - Mathematical model.
 - Conseptualization of existing qualitative knowledge.
 - Conseptualization of existing quantitative knowledge.

Let's look at the relationship between income and age

- Variables
 - 1 income = income in euros
 - 2 age = age in years
- We use the same FLEED data as in lecture 2, i.e., it comes from one year.
- These data are an example of cross-section data where each observation unit is observed only once and there is no (meaningful) time (second) dimension to the data besides the individuals.

Toivanen Lecture 3 6/35

Descriptive statistics

Descriptive statistics						
variable	mean	sd	median			
income	23 297	17 163	21 000			
age	41.87	16.29	43			

 For brevity, I do not show conditional descriptive statistics as we have already seen them in lecture 2.

Modeling the relationship between income and age

$$Y = f(X) \tag{1}$$

- What do we know about f(X)?
- How can we learn about it?

Toivanen Lecture 3 8/35

Quick aside - correlation

$$corr(Y,X) = \frac{cov(Y,X)}{\sqrt{var(X)}\sqrt{var(Y)}}$$
(2)

Toivanen ECON-C4100 Lecture 3 9/35

More structure - linear

$$Y = \beta_0 + \beta_1 X \tag{3}$$

- This is the so called population regression line. (populaation) regressio).
- Y is called the dependent variable or endogenous variable (vastemuuttuja).
- X is called the independent or the exogenous variable or regressor (selittävä muuttuja).
- β_0 , β_1 are the **parameters** of the model ((malli)parametrit).

Toivanen Lecture 3 10 / 35

More structure - linear

$$Y = \beta_0 + \beta_1 X \tag{4}$$

- β_0 , β_1 interpretation?
- Intercept, slope.
- What is now assumed about what can influence Y?

Toivanen Lecture 3 11/35

How to allow for other factors?

$$Y = f(X, u) = \beta_0 + \beta_1 X + u \tag{5}$$

• *u* is called the **error term** or **residual** (**virhetermi**). Why such a name?

Toivanen ECON-C4100 Lecture 3 12 / 35

How to allow for other factors?

$$Y = f(X, u) = \beta_0 + \beta_1 X + u \tag{5}$$

- u is called the **error term** or **residual** (**virhetermi**). Why such a name?
- 1 It shows how much our model misses in terms of determining Y.

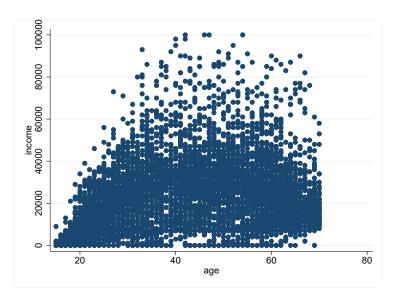
Toivanen Lecture 3 12/35

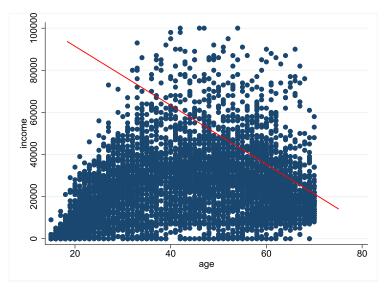
How to allow for other factors?

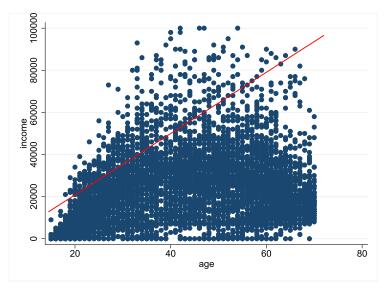
$$Y = f(X, u) = \beta_0 + \beta_1 X + u \tag{5}$$

- u is called the error term or residual (virhetermi). Why such a name?
- 1 It shows how much our model misses in terms of determining Y.
- 2 It measures those things that 1) affect Y and 2) we don't observe.

Toivanen Lecture 3 12/35


What is known about u?


- How large should the error be on average?
- Zero. Why?


$$\to E[u|X]=0$$

Stata code

```
scatter income age if year == 15 & income != . . ///
xtitle("age") ///
ytitle("income") ///
graphregion(fcolor(white))
```


Ordinary Least Squares.

$$\mathbf{Y} = \begin{pmatrix} Y_1 \\ Y_2 \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ Y_n \end{pmatrix}, \quad \mathbf{U} = \begin{pmatrix} u_1 \\ u_2 \\ \cdot \\ \cdot \\ \cdot \\ u_n \end{pmatrix}, \quad \mathbf{X} = \begin{pmatrix} 1 & X_1 \\ 1 & X_2 \\ \cdot \\ \cdot \\ \cdot \\ 1 & X_n \end{pmatrix} = \begin{pmatrix} \mathbf{X}_1' \\ \mathbf{X}_2' \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \mathbf{X}_n' \end{pmatrix} \quad , \tag{6}$$

and
$$\beta = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}$$
.

Toivanen ECON-C4100 Lecture 3 18 / 35

• Ordinary Least Squares.

$$Y_i = \beta_0 + \beta_1 X_i + u = \mathbf{X}_i' \mathbf{\beta} + u_i \tag{7}$$

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{U} \tag{8}$$

$$\mathbb{E}[Y - (\beta_0 + \beta_1 X)] = \mathbb{E}[u|X] = \mathbb{E}[Y - \mathbf{X}_i'\beta] = 0$$
(9)

$$\mathbb{E}[\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}] = \mathbb{E}[\mathbf{U}|\mathbf{X}] = 0 \tag{10}$$

Toivanen ECON-C4100 Lecture 3 19/35

$$\min_{\beta_0,\beta_1} \sum_{i=1}^n [Y_i - (\beta_0 + \beta_1 X_i)]^2$$
 (11)

$$min_{\beta}(\mathbf{Y} - \mathbf{X}\beta)'(\mathbf{Y} - \mathbf{X}\beta)$$
 (12)

• Suggestion: Do the derivation w/out using matrix algebra. It helps you understand the formula for β_1 .

Toivanen ECON-C4100 Lecture 3 20 / 35

Notice link to estimation of mean and set $\beta_1 = 0$.

$$\sum_{i=1}^{n} [Y - (\beta_0)]^2 \tag{13}$$

• Now $\beta_0 = m = \mathbb{E}[\mu_Y]$.

Toivanen Lecture 3 21 / 35

$$\hat{\beta}_1 = \frac{\frac{1}{n} \sum_{i=1}^n XY - \bar{X}\bar{Y}}{\frac{1}{n} \sum_{i=1}^n XX - \bar{X}\bar{X}} = \frac{cov(Y, X)}{var(X)} = \frac{cov(Y, X)}{\sqrt{var(X)}\sqrt{var(X)}}$$
(14)

Note: compare to the formula for correlation.

$$\hat{\beta}_{0} = \bar{Y} - \frac{\frac{1}{n} \sum_{i=1}^{n} XY - \bar{X}\bar{Y}}{\frac{1}{n} \sum_{i=1}^{n} XX - \bar{X}\bar{X}}\bar{X} = \bar{Y} - \hat{\beta}_{1}\bar{X}$$
(15)

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}(\boldsymbol{X}'\boldsymbol{Y}) \tag{16}$$

Toivanen ECON-C4100 Lecture 3 22 / 35

Predicted value (ennuste): $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ or $\hat{Y} = \hat{\beta} X$.

Prediction error (ennustevirhe): $\hat{u}_i = Y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)$ or $\hat{\boldsymbol{U}} = \boldsymbol{Y} - \hat{\boldsymbol{\beta}} \boldsymbol{X}$.

Toivanen ECON-C4100 Lecture 3 23 / 35

Back to income and age...

• So let's run the regression:

Stata code

```
label var age "Age"
reg income age if year == 15 & income != .

setimates store lin_est
estimates table lin_est, b(%7.3f) se(%7.3f) p(%7.3f) stat(r2)
estab, scalar(F) r2 label ///
title(Regression of income on age) ///
nonumbers mtitles("Model A") ///
addnote("Data: teaching FLEED, Statistics Finland")
esttab using income_age.tex, scalar(F) r2 label replace booktabs ///
alignment(D{.}{.}{-1}) width(0.8\hsize) ///
title(Income and age\label{tabl})
```

Regular Stata output table

. reg income age if year == 15 & income != .

Source	SS	df	MS	Numbe F(1,	r of obs	=	5,973 493.91
Model Residual	1.3441e+11 1.6249e+12	1 5,971	1.3441e+13 27212868	l Prob 7 R-squ	> F ared	=	0.0000 0.0764 0.0762
Total	1.7593e+12	5,972	294589468		-squared MSE	=	16496
income	Coef.	Std. Err.	t	P> t	[95% Cor	nf.	Interval]
age _cons	296.7539 10654.7	13.35276 607.5672	22.22 17.54	0.000	270.5776 9463.64		322.9301 11845.75

Coefficients / economic significance

. reg income age if year == 15 & income != .

Source	SS	df	MS	Number of obs	=	5,973
Model Residual	1.3441e+11 1.6249e+12	1 5,971	1.3441e+11 272128687	F(1, 5971) Prob > F R-squared	= = =	493.91 0.0000 0.0764
Total	1.7593e+12	5,972	294589468	Adj R-squared Root MSE	=	0.0762 16496
income	Coef. S	Std. Err.	t P	?> t [95% Co:	nf.	Interval]

income	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age	296.7539	13.35276	22.22	0.000	270.5776	322.9301
_cons	10654.7	607.5672	17.54		9463.644	11845.75

Standard errors etc., statistical significance of individual parameters

. reg income age if year == 15 & income != .

Source	SS	df	MS	Number of obs	=	5,973 493.91
Model Residual	1.3441e+11 1.6249e+12	1 5,971	1.3441e+11 272128687	F(1, 5971) Prob > F R - squared	= =	0.0000 0.0764
Total	1.7593e+12	5,972	294589468	Adj R-squared Root MSE	=	0.0762 16496

income	Coef. Std. Err.	t	P> t	[95% Conf.	Interval]
age _cons	296.7539 13.35276 10654.7 607.5672			270.5776 9463.644	

Toivanen ECON-C4100 Lecture 3 27 / 35

Regression level statistical measures

```
. reg income age if year == 15 & income != .
```

cons

					_				
	Source	SS	df	MS	Numbe	er of obs	=	5,973	_
_					F(1,	5971)	=	493.91	
	Model	1.3441e+11	1	1.3441e+1	1 Prob	> F	=	0.0000	
	Residual	1.6249e+12	5,971	27212868	7 R-squ	ared	=	0.0764	
_					– Adj F	R-squared	=	0.0762	
	Total	1.7593e+12	5,972	29458946	8 Root	MSE	=	16496	
		'							
_	income	Coef.	Std. Err.	t	P> t	[05% Co.	n f	Interval	
	THEOME	coei.	ocu. EII.		E > C	[95% CO	111.	Intervarj	
	age	296.7539	13.35276	22.22	0.000	270.577	6	322.9301	

10654.7 607.5672 17.54 0.000

Toivanen ECON-C4100 Lecture 3 28 / 35

9463.644

11845.75

A formatted version with the requested information only

- . estimates store lin est
- . estimates table lin_est, b(\$7.3f) se(\$7.3f) p(\$7.3f) stat(r2

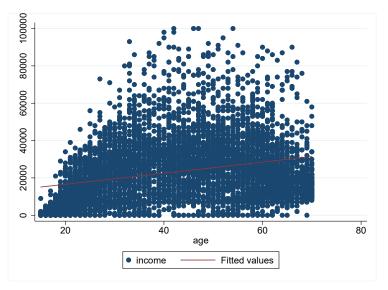
Variable	lin_est
age _cons	296.754 13.353 0.000 1.1e+04 607.567 0.000
r2	0.076

legend: b/se/p

Toivanen ECON-C4100 Lecture 3 29 / 35

A LATEX version of the same table

Table: Income and age

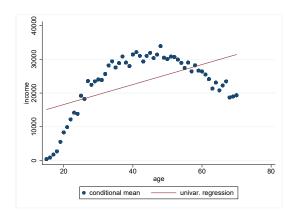

	(1) income
Age	296.8*** (22.22)
Constant	10654.7*** (17.54)
Observations R ² F	5973 0.076 493.9

t statistics in parentheses

*
$$p < 0.05$$
, ** $p < 0.01$, *** $p < 0.001$

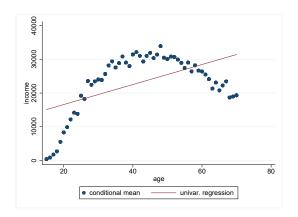
30 / 35

• What do β_0 and β_1 mean?



- β_0 = the intercept.
- β_1 = the slope of the regression line.

$$\mathbb{E}[Y|X=x] = \beta_0 + \beta_1 x \tag{17}$$


- Regression allows you to study the (changes in) the conditional mean.
- Thus, β_1 is the derivative of Y wrt. X.

Toivanen Lecture 3 32 / 35

• Why are the two conditional mean presentations in the figure different?

Toivanen Lecture 3 33 / 35

- Why are the two conditional mean presentations in the figure different?
- The regression "forces" the relationship to be linear, i.e., we chose the relationship to be linear.

Toivanen ECON-C4100 Lecture 3 33 / 35

- How good is the model's fit? How much does it explain?
- Of what..? Answer: of the variation in Y.

Explained sum of squares (ESS): $\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$.

Total sum of squares (TSS): $\sum_{i=1}^{n} (Y_i - \bar{Y})^2$.

Residual sum of squares (RSS): $\sum_{i=1}^{n} (u_i)^2$.

$$R^{2} = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS} \in [0, 1]$$
 (18)

- R^2 "close to one" = "almost all" variation in Y captured by the model (= variation in X).
- R^2 "close to zero" = "almost no" variation in Y captured by the model (= variation in X).
- Note #1: R^2 has not effect on the interpretation of β .
- Note #2: R² will have an effect on whether we reject the model or not, on statistical grounds.

Toivanen ECON-C4100 Lecture 3 35 / 35