ECON-C4100 - Capstone: Econometrics I Lecture 4: Univariate regression

Otto Toivanen

- We postpone further discussion of regression level diagnostics to the lectures on multivariate regression.
- The reason for this is that they (adjusted R^2 , *F*-test), are more meaningful in the multivariate context.

- Economic interpretation & significance is of key importance.
- What about statistical significance?
- Recall the discussion on the properties of the sample mean:
 - It is a random variable (every random sample produces its own mean to be used as an estimate of the population mean).
 - 2 It is unbiased and consistent
 - 3 It has a distribution that we can characterize (with large n, becomes / approaches a normal distribution).

- Similarly, the parameters we "find" or estimate with OLS depend on the random sample available to us.
- Were you to draw a different random sample, you would get different parameter estimates.
- In other words, β_0 and β_1 are also random variables.
- We'd like to know their properties, i.e., how they are distributed, and how different things affect that distribution.
- Under assumptions that we'll discuss in a moment, β_0 and β_1 are (bivariate) normally distributed with a known mean and variance.

- $\hat{eta_0}$ and $\hat{eta_1}$ are
 - unbiased
 - 2 consistent and
 - **3** efficient (with an extra assumption).

under a set of assumptions.

OLS assumptions

- One needs to understand the assumptions that allow a particular interpretation of the results.
- Crucial to understand the assumptions & their implications.
- Crucial to form an opinion or test the validity of assumptions and/or the robustness of results to those assumptions.

OLS assumptions

- 1 Strict exogeneity: $\mathbb{E}(u_i|X_i) = 0$.
- (X_i, Y_i), i = 1, ..., n are independent and identically distributed across observations.
- **3** X_i and Y_i have finite *fourth* moments.
- **4** Auxiliary: u_i is homoscedastic.
- We next discuss each of these in turn.

OLS Assumption #1

 $\mathbb{E}(u_i|X_i)=0$

• Implies that *u* and *X* are uncorrelated.

•
$$E(u_i|X_i) = 0 \implies cov(u, X) = 0.$$

 Not the other way round because correlation is about a linear relationship only.

OLS Assumption #2

- $(X_i, Y_i), i = 1, ..., n$ are i.i.d.
- The same concept as before, but now over a joint distribution of two variables.
- Experiments where X chosen.
- Time series.

• X_i and Y_i have finite *fourth* moments: $\mathbb{E}(X)^4$, $\mathbb{E}(Y)^4 < \infty$.

= they have finite kurtosis.

- Needed to ensure that the standard errors are from a normal distribution (4th moment \approx variance of variance).
- Means that large outliers are (extremely) unlikely.

OLS Assumption #4

•
$$var(u_i|X_i = x) = \sigma^2$$
 for $i = 1, ..., n$.

• *u_i* is homoscedastic (as opposed to heteroskedastic).

• Alternative:
$$var(u_i|X_i = x) = \sigma_i^2$$
.

The Gauss-Markov Theorem

• The Gauss-Markov Theorem states that:

If A.1 - A.4 hold, then OLS is BLUE (Best Linear Conditionally Unbiased Estimator).

• You can find the proof in your textbook.

Let's have a look at the effects of the OLS assumptions

• To understand the effects of the OLS assumptions, let's study the following estimation equation:

$$Y_i = \beta_0 + \beta_1 X_i + u = \mathbf{X}'_i \boldsymbol{\beta} + u_i$$
⁽¹⁾

- Let's vary different aspects of the Data Generating Process (GDP).
- How do we do this?

. . .

(Monte Carlo) simulation

- Let's use artificial data that has "appealing" features.
- Artificial data: ask the computer to generate it.

 \rightarrow the researcher chooses what the data looks like.

- Monte Carlo simulation: repeat a statistical model *S* times on artificial data, look at means and distributions of parameters.
- We are going to generate artificial data that has the key properties of our FLEED data and use it to illustrate the effects of the OLS assumptions.

- 1 Decide the properties you want the data to have.
- 2 Choose the parameters of the model.
- 3 Use a random number generator to generate the exogenous variables, including the error term.
- Generate the dependent variable using the parameters and the exogenous variables.

How to generate data that looks like FLEED?

Stata code

```
regr income age if year == 15 & income != .
1
2
  predict u_hat, res
3
   sum income age u_hat
4
   matrix beta
                  = e(b)
5
   matrix list beta
6
   scalar beta0 = beta[1,2]
7
   scalar beta1 = beta[1,1]
   qui sum u_hat if e(sample)
8
9
   scalar u_sd
               = r (sd)
10
  qui sum age
11
   scalar age_m = r(mean)
12 scalar age_sd = r(sd)
```

How to generate data that looks like FLEED?

Stata code

```
drop all
   global age_m
 2
                          = age_m
 3
   global b0
                        = beta0
4
   global b1
                        = beta1
5
   global age_m
                          = age_m
6
   set seed 987345
7
8
   capture program drop myprog_sim
9
   program define myprog_sim
10
     drop _all
11
     set obs 10000
                            = age_m + rnormal(0, age_sd)
12
     gen x
                               = $b0
13
     scalar beta0
14
     scalar beta1
                               = $b1
15
     gen u
                        = rnormal(0, u_sd)
16
     aui sum u
17
     scalar u_mean
                           = r (mean)
18
     replace u
                         = u — u mean
19
     gen y
                               = beta0 + beta1 * x + u
20
     regr y x
21
   end
22
23
  simulate _b _se, saving(myprog_sim, replace) reps(1000): myprog_sim
24
   display "OLS nobs 10000"
25
   sum
```

Assumption 4: Homoskedastic versus heteroskedastic u

- To study the role of the variance of the error term, let's create data sets with different types of variances.
- The data generating process:

• Case #1:
$$u = rnormal(0, \sigma_u^2)$$

- Case #2: $u_{het} = rnormal(0, \sigma_u^2) \times (1 + z \times age)$
 - z = a multiplier chosen by the modeller.
- Notice both cases satisfy $\mathbb{E}(u|age) = 0$.

Homoskedastic versus heteroskedastic u

$$Income_i = \hat{\beta}_0 + \hat{\beta}_1 age_i + u_i$$

$$Income_{het,i} = \hat{\beta_0} + \hat{\beta_1}age_i + u_{het,i}$$

- Let's vary *z* = 0.1, ..., 1
- Sample size 1000.

Benchmark: the actual regression results

. estimates store lin_est

. estimates table lin_est, b(%7.3f) se(%7.3f) p(%7.3f) stat(r2

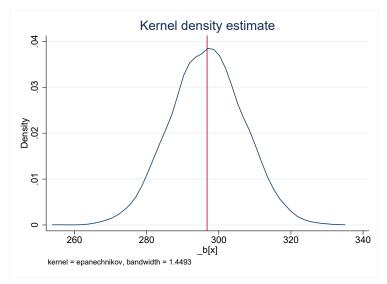
Variable	lin_est
age _cons	296.754 13.353 0.000 1.1e+04 607.567 0.000
r2	0.076

legend: b/se/p

Let's first check how this works with z = 0: Estimates

Variable	Obs	Mean	Std. Dev.	Min	Max
_b_x	1,000	296.5223	10.36742	267.9936	325.9853
_b_cons	1,000	10664.63	441.6165	9412.67	11876.38
_se_x	1,000	10.31445	.1038239	9.895374	10.73409
_se_cons	1,000	469.3358	4.696664	449.9725	488.3702

Let's first check how this works with z = 0: Distribution of β_1



Then increase z

Z	β_1	se_{eta_1}	β_0	se_{eta_0}
1	293.58	174.12	10741.91	7815.36
2	337.49	318.82	9111.05	14304.02
3	297.95	462.01	10402.12	20770.64
4	261.93	606.49	11762.07	27183.05
5	326.50	747.35	9278.87	33530.71
6	374.37	895.85	7290.83	40201.69
7	176.23	1042.51	15146.60	46913.89
8	397.26	1186.82	6880.53	53272.23
9	320.64	1328.07	9650.81	59678.00
10	358.15	1470.39	8538.93	66067.65
"Truth"	296.754		10664	

Table: Effect of heteroskedasticity

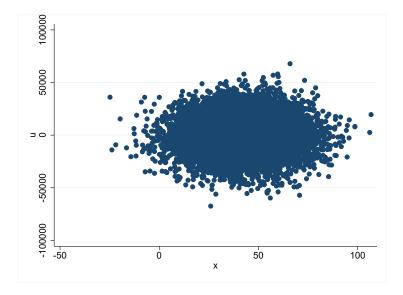
What happens to estimated parameters and their standard errors?

- The parameter estimates vary from row to row in the table of the previous slide, but are on average correct.
- The standard errors however are monotonically increasing as we go down the rows, i.e., as we increase the degree of heteroskedasticity.

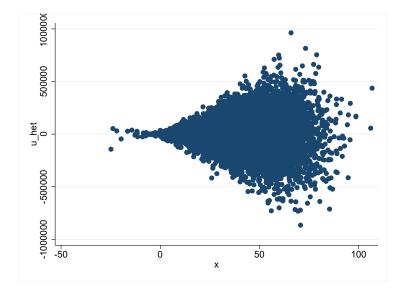
What happens to the distribution of u?

- $\mathbb{E}[u|X] = 0$ holds for all the samples.
- But the variance of *u* becomes an increasing function of *age*.
- This leads to a very different looking distribution.

Distribution of homoskedastic u



Distribution of heteroskedastic u



What to do about heteroskedasticity?

• In practice, data have/lead to heteroskedastic errors almost always.

 \rightarrow easy and efficient ways to correct for heteroskedasticity.

- Modern default is to use (heteroskedasticity) robust standard errors.
- Wrong assumption on variance of the error term biases standard errors, *not coefficients*.

Assumption #3: No large outliers

- (large) outliers may lead to biased estimates.
- Difficulty is of course to determine what is large.
- For illustration, let's replace a few values of *age* with much larger values.
- First, *age* of one individual multiplied by 10 ("typo") in a sample of 1000 observations.
- Second, same done for 10 individuals.

Introduce outliers

Table: Effect of outliers

% obs. changed	β_1	se_{β_1}	β_0	se_{β_0}
0.1	207.16	26.63	14348.99	1247.97
1	47.29	12.71	20958.43	795.41
True estimates	296.754	13.353	10664	607.567

What to do about outliers?

- Always check your data for outliers.
- If you find any, check whether they are typos or real.
- Check that your results are robust to excluding the outlier observations from your estimation sample.
- Using richer functional forms for Y = f(X, u) (=i.e., multiple regression) may also help.