COURSE OUTLINE UNDERSTANDING DATA

URBAN STUDIES AND PLANNING DIGITAL URBAN MONDAY 17TH JANUARY 9:00-12:00

Anssi Joutsiniemi D.Sc(Tech), Architect Professor of Practice Aalto University

COURSE OUTLINE

<USP-E0363> COURSE IN NUTSHELL

COURSE INFORMATION:

MyCourses:

https://mycourses.aalto.fi/course/ view.php?id=32810 ONLINE LECTURES:

Zoom:

https://aalto.zoom.us/j/67921221869? pwd=cG5NYml2elh1alhiYmsyZDNKbUR0QT09

COURSE OUTCOME:

Your DATA FACORY:

One single notebook at notebooks.csc.fi/

GENERALIZED DATA FACTORY DIAGRAM

DATA BASICS CHEAT SHEET

NUMBER SYSTEMS

Decimal	(10-base)	[Values: 0,1,2,3,4,5,6,7,8,9]
Binary	(2-base)	[Values: 0,1]
Octal	(8-base)	[Values: 0,1,2,3,4,5,6,7]
Hexadecimal	(16-base)	[Values: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F]

https://www.youtube.com/watch?v=aW3qCcH6Dao https://www.youtube.com/watch?v=GPnLy6YO-0M

DATA TYPES

Numbers

1 bit & 4 bits	(max. 2 & 16)	
8-bits	(max. 256)	Byte
2 bytes, 16 bits	(max. 65 536)	Small Integer (signed/unsigned)
4 bytes, 32 bits	(max. 4 294 967 296)	Integer (signed/unsigned)
8 bytes, 64 bits	(max.18 446 744 073 709 551 616)	Floating point values
1 byte	(max. 256)	Character
2 bytes	(max. 65 536)	Unicode character
(YYYY-MM-DD hh:mm	:ss)	
4 bytes	1900-01-01 through 2079-06-06	1 minute accuracy
8 bytes	1753-01-01 through 9999-12-31	0.00333 second accuracy
	 1 bit & 4 bits 8-bits 2 bytes, 16 bits 4 bytes, 32 bits 8 bytes, 64 bits 1 byte 2 bytes (YYYY-MM-DD hh:mm 4 bytes 8 bytes 	1 bit & 4 bits (max. 2 & 16) 8-bits (max. 256) 2 bytes, 16 bits (max. 65 536) 4 bytes, 32 bits (max. 4 294 967 296) 8 bytes, 64 bits (max.18 446 744 073 709 551 616) 1 byte (max. 256) 2 bytes (max. 65 536) (YYYY-MM-DD hh:mm:ss) (max. 65 536) 4 bytes 1900-01-01 through 2079-06-06 8 bytes 1753-01-01 through 9999-12-31

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	0	96	60	N
1	1	[START OF HEADING]	33	21	1	65	41	Α	97	61	а
2	2	[START OF TEXT]	34	22		66	42	в	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	С	99	63	с
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	е
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1.00	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	н	104	68	ĥ
9	9	[HORIZONTAL TAB]	41	29)	73	49	1.1	105	69	i i
10	А	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	κ	107	6B	k
12	С	[FORM FEED]	44	2C	,	76	4C	L.	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	м	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	Р	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r i
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	т	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	v	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	w	119	77	w
24	18	[CANCEL]	56	38	8	88	58	Х	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	v
26	1A	[SUBSTITUTE]	58	3A	1.00	90	5A	z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	E I	123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	A.	124	7C	Ĩ.
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	ЗF	?	95	5F	_	127	7F	[DEL]

- ASCII American Standard Code for Information Interchange 7-bit
- ANSI American National Standards Institute

8-bit

Unicode (see: https://en.wikipedia.org/wiki/List_of_Unicode_characters)

Hex-to-ASCII <u>https://www.rapidtables.com/convert/number/hex-to-ascii.html</u>

ASCII-to-Hex https://www.rapidtables.com/convert/number/ascii-to-hex.html

CODING COLOUR

Color spaces are typically of DWORD length i.e. 4 bytes (32 bits) long. Threfore there is 1 byte (256 values) per color component.

Additive colors (RGB):

https://www.youtube.com/watch?v=LCs8mK1rzc0

Substractive colors (CMYK):

https://www.youtube.com/watch?v=r8ejTUNwgTo

Colors in WWW: <u>https://en.wikipedia.org/wiki/Web_colors</u> <u>http://htmlcolorcodes.com/</u>

WORLD WIDE WEB CONSORTIUM

The World Wide Web Consortium (W3C) is an international community that develops open standards to ensure the long-term growth of the Web. It is the biggest open source community.

Founded and currently led by Tim Berners-Lee, the consortium is made up of member organizations which maintain full-time staff for the purpose of working together in the development of standards for the World Wide Web. As of 24 September 2017, the World Wide Web Consortium has 463 members.

Standards:

http://www.w3.org/standards/webdesign/ http://www.w3.org/standards/xml/

HTML

Hypertext Markup Language is based on marking the logical structure of text by tagging. For example EMPHASISED TEXT HERE

<!doctype html> <html> <head> <title> </title> </head> <body> Hello World </body> </html>

Elements in HTML:http://www.w3.org/TR/2011/WD-html5-20110525/semantics.html#semanticsHTML validator:https://validator.w3.org/#validate by input

CSS

Style is beyond baseline HTML structure and are defined in Cascading Style Sheets.

Can be separate files or inline coding.

In <head> section:

```
<link rel="stylesheet" type="text/css" href="mystyle.css">
```

```
Inside <style> tags
```

```
<style>
h1 {
    color: navy;
    margin-left: 20px;
}
</style>
```

Inside tags:

```
<h1 style="color:blue;margin-left:30px;">This is a heading</h1>
```

Specifications: http://www.w3.org/Style/CSS/specs.en.html

XML

<note></note>	
	<to>Tove</to>
	<from>Jani</from>
	<heading>Reminder</heading>
	<body>Don't forget me this weekend!</body>

Extensible Markup Language (XML) is a markup language that defines a set of rules for encoding documents in a format that is both human-readable and machine-readable.

A markup language is a system for annotating a document in a way that is syntactically distinguishable from the text.

The idea and terminology evolved from the "marking up" of paper manuscripts, i.e., the revision instructions by editors, traditionally written with a blue pencil on authors' manuscripts.

Several <u>schema</u> systems exist to aid in the definition of XML-based languages.

Hundreds of document formats using XML syntax have been developed, for example GML <u>schema</u> for geographical data by Open Geospatial Consortium (OGC).

JSON JavaScript Object Notation

JSON is an open standard file format and data interchange format that uses human-readable text to store and transmit data objects consisting of attribute–value pairs and arrays.

JSON is and industry standard very similar to XML, but few advantages for programming.

Differences between XML and JSON include

- JSON doesn't use end tag
- JSON is shorter
- JSON is quicker to read and write
- JSON can use arrays

JSON in Wikipedia: XML vs. JSON comparison: https://en.wikipedia.org/wiki/JSON

https://www.w3schools.com/js/js json xml.asp

SVG

Scalable Vector Graphics

Inline SVG:

<div><svg><!-- WHERE THE MAGIC HAPPENS. --></svg></div>

EXAMPLE SYNTAX:

```
SVG Tutorial:
SVG elements:
Official specification:
```

https://www.w3schools.com/graphics/svg_line.asp https://www.w3schools.com/graphics/svg_reference.asp http://www.w3.org/Graphics/SVG/

ADVANCED TOPICS

DIFFERENCES IN OPERATING SYSTEMS

Coding new line i.e. pressing <ENTER>

Mac OS & Apple II family:	0 D	(carriage return)
Linux/Unix:	0A	(line feed)
Windows:	OD OA	(carriage return + line feed)

Nemory storage for data: 90 AB 12 CD													
Little Endian (IBM):	DWORD: CD 12 AB 90	WORD AB 90 + CD 12											
(i.e. least significant byte to the most	significant byte)												
Big Endian (Sun):	DWORD: 90 AB 12 CD	WORD 90 AB + 12 CD											
/• • • • • • • • • • • • • • • • • • •	• • • • • • • • • •												

(i.e. most significant byte to the least significant byte)

Tutorial: <u>https://www.youtube.com/watch?v=T1C9Kj_78ek</u>

TIFF Tagged Image File Format

|--|

0	49	49	2A	00	08	00	00	00	19	00	00	01	03	00	01	00	00	00	E8	03	00	00	01	01	03	00	01	00	00	00	33	0
20	00	00	02	01	03	00	04	00	00	00	ЗA	01	00	00	03	01	03	00	01	00	00	00	05	00	00	00	06	01	03	00	01	0
40	00	00	02	00	00	00	0D	01	02	00	68	00	00	00	42	01	00	00	0E	01	02	00	12	00	00	00	AA	01	00	00	11	(
60	04	00	05	00	00	00	BC	01	00	00	12	01	03	00	01	00	00	00	01	00	00	00	15	01	03	00	01	00	00	00	04	1
80	00	00	16	01	03	00	01	00	00	00	80	00	00	00	17	01	04	00	05	00	00	00	DO	01	00	00	1A	01	05	00	01	1
A0	00	00	E4	01	00	00	1B	01	05	00	01	00	00	00	EC	01	00	00	1C	01	03	00	01	00	00	00	01	00	00	00	1D	1
CO	02	00	0A	00	00	00	F4	01	00	00	28	01	03	00	01	00	00	00	02	00	00	00	31	01	02	00	0D	00	00	00	FE	1
EO	00	00	32	01	02	00	14	00	00	00	0C	02	00	00	зD	01	03	00	01	00	00	00	02	00	00	00	4A	01	04	00	01	1
100	00	00	C8	04	00	00	52	01	03	00	01	00	00	00	01	00	00	00	53	01	03	00	04	00	00	00	20	02	00	00	69	2
120	04	00	01	00	00	00	6A	05	00	00	73	87	07	00	AO	02	00	00	28	02	00	00	00	00	00	00	08	00	08	00	08	(
140	08	00	5C	5C	68	6F	6D	65	2E	6F	72	67	2E	61	61	6C	74	6F	2E	66	69	5C	6A	6F	75	74	73	69	61	31	5C	1
								1	1			-	1			-	1			-												T

TIFF general: TIFF 6.0 Specification: https://en.wikipedia.org/wiki/TIFF

https://www.itu.int/itudoc/itu-t/com16/tiff-fx/docs/tiff6.pdf

DATA COMPRESSION I.E. PACKING

The process of reducing the size of a data file.

Compression can be either lossy or lossless.

No information is lost in lossless compression. Lossy compression reduces bits by removing unnecessary or less important information.

- The Lempel–Ziv (LZ) compression methods are among the most popular algorithms for lossless storage.
- DEFLATE is a variation on LZ optimized for decompression speed and compression ratio, but compression can be slow. DEFLATE is used in PKZIP, Gzip, and PNG.
- LZW (Lempel–Ziv–Welch) is used in GIF images.
- Look for z-ending filenames: .klmz, .svgz etc.

Becoming more and more popular due to openness requirements. (vrt. .doc vs .docx)

MS-format specifications: <u>https://msdn.microsoft.com/en-us/library/office/cc313105(v=office.12).aspx</u>

Thank you!

QUESTIONS ?

