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Consider the set of decision variables w, y, and z and the following objective function

f (w,2) +g(2,9)+h(y,2)

7

Ve

0 1 D3

Each stage-cost function in the sum depends only on the adjacent variable pairs

Consider the case in which w is known, and we want to solve the optimisation problem

min  f(z|w)+ g (z,y) + h(y, 2)

T,Y,2|w

One possibility would be to optimise for all the three decision variables (z, vy, z)

~~+ This solution is valid, but it does not exploit the problem structure

We can alternatively solve a sequence of single-variable optimisation problems

min (f(wlw)+myin (g(m’y)erzin h(y’z)»

x|w
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min (f(x|w)+myil’l (g(x,y)ergn h(y,z))>

An example T | w

Starting from the innermost optimisation problem, we solve with respect to variable z

An example

An example
min h (y, 2)
z
We obtain the solution for z and the optimal value function in terms of variable v,
h* (y) =min h(y,z) (optimal value function)
z

z* (y) = argmin h(y, 2) (minimiser)
z
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min f (z|w) + min g(z,y)+min h(y,z)
An example xlw Yy 4
\ - ~~ J/
h*(y)
An example
An example Proceeding with the next optimisation problem, we solve it with respect to variable y

myin g(z,y)+hr*(y)

We obtain the solution for y and the optimal value function in terms of variable z,
g (x) =min g (x,y)+ h" (y) (optimal value function)
Y

y*(z) = argmin g (z,y) + " (y) (minimiser)
Yy
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An example min f (:Bl’lU) _|_ min g (3;7 y) —|_ min h (y7 z)
x| w Y 7 P
h*(y)

S J
An example - )
*
9% ()

An example

At the third and final optimisation problem, we solve it with respect to variable x

min  f (z|w) 4+ g” (=)

x|w
We obtain the solution for z and the optimal value function in terms of value w

f*(w) =min f(x|w)+ g* () (optimal function value)
xT

z*(w) = arg mxin f(z|lw)+ g* (x) (solution)
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min f (z|w) + min g(z,y)+min h(y,2)
z

x| w Y

An exampl N ~~ -
h*(y) at z*(y)
K N ~ 4)
g*(z) at y*(z)
An example \ -~ J/
An example f* (w) at ¥ (w)

Because w is fixed (we know its value) we have that z*(w) is completely determined
Thus, we also have that y*(z*(w)) and z*(y*(z*(w))) are completely determined
v (w) = y™(z%(w))
z"(w) = 2" (y" (w))
= 2" (y" (2" (w)))

Similarly, the optimal value of the objective function can be also computed

A (w) + g7 (2 (w)) + h™ (y™ (27 (w)))
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Optimising multi-stage functions (cont.)

The method to solve (unconstrained) multi-state optimisation problems can be an
alternative approach for optimal control problems, backward dynamic programming

® The decision variables are solved in reverse order

The solutions expressed as functions of the variables to be optimised at the next stage

Its application is easiest for discrete-time systems with discrete state and action spaces

® With continuous spaces, applicability is achieved by discretisation
® In continuous-time the problem is formulated as a PDE, the HJB

® (The Hamilton-Jacobi-Bellmann equation)
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Discrete state- and action-spaces

We consider the nonlinear dynamic equation of a discrete-time state-space model

Th+1 = f (Tk, ug)
Moreover, suppose that the state- and the action-space be discrete and finite

xR € X, with |X| = Ny
up €U,  with [U| = Ny

Based on the discrete dynamics, we formulate the optimal control problem

K—-1
$O7$17°'I°I}:]trf](-—laxK E(‘IEK) + Z L(xk,Uk)
UQ , U 5-- s UK — 1 k=0
subject to  f (xx, ux) — xx+1 = 0, k=01,..., K—-1

o — 20 =20

The initial state zg is assumed to be know, fixed at value zg
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Discrete state- and action-spaces (cont.)

min

LOH,LL sy TK —1+9TK

UQ UL - UK — 1

K—1
E(zx)+ Y Lz, w)
k=0

subject to  f (ax, ug) — x41 = 0, k=0,1,..., K —1

o — 20 =0

The controls {uy } ?:_01 are the true decision variables of the optimisation

The state variables can be eliminated by forward simulation

zx (20, U0, U1, - -

w1 (20, uo) = f (@0, uo)
22 (20, w0, u1) = f (71, u1)
= f(f (20, uo), u1)
23 (20, w0, u1, u2) = f (22, u2)
= f(f(f (=0, uo), w1), u2)
G UK—2,Uk—1) = f(TK -1, UK 1)

= f(f(- - f(z0,u0), UK —2), UK —1)
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Discrete state- and action-spaces (cont.)

K—-1
mOaa;l,--r-r,l%:r[%_l,xK E(xK) + Z L(:E]{;,’U,k)
’U,O,Ul,...,’u,K_l k:O

subject to  f (xx, ug) — zp4+1 = 0, k=0,1,..., K —1
o — 20 =0
This formulation of discrete-time optimal control problem misses path constraints

They can be implicitly included by allowing the stage cost to be equal to infinity

® For infeasible points (zy, u;), we have that L (xx, ux) = oo

To be able to include inequality constraints, we thus have

L: X xU—RUox
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Discrete state .
and action min E (xK) + E L (xk;, 'U;k)
spaces ZOyT1 sy TK —1-TK
UQ s UL 5ev oy UK — 1 k=0
An example

subject to  f (ax, ux) — x41 = 0, k=0,1,..., K —1

o — 20 =0

An example

An example

As each wuy can only take on one of Ny, values, there are szf possible control sequences

Ny X Ny X -+ X Ny

-~
K times

Each possible sequence would correspond to a different trajectory {{zy, u} kK:_Ol Uz}

~+ Bach trajectory is characterised by its specific value of the objective function

~+ The optimal solution corresponds to the sequence of smallest function value
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Discrete state- and action-spaces (cont.)

K—-1
wO)mlv'I'r;l‘;lEIf](-—l)xK E(xK) —|_ Z L(xk,Uk)
UQ s UT 5-v- s UK — 1 k=0
subject to  f (xx, ux) — k1 = 0, k=01,..., K—1

o — 20 =20
Naive enumeration of all trajectories has a complexity that grows exponentially in K
Ny X Ny X -+ X Ny

~
K times

The idea behind dynamic programming is to approach the enumeration task differently

We start by noting that each sub-trajectory of an optimal trajectory must be optimal

® We denote this property as the principle of optimality
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Discrete state- and action-spaces (cont.)

We define the value-function or cost-to-go as the optimal cost that would be attained if,
at time k£ and state T, we would solve the shorter optimal control problem

K—-1
Jk (Ek) :xkaxk-Fl}"r'l'ia%K—l?xK B (xK) _|_ Z L(x?/, Uz)
Uk Uk £ 15+ UK —1 1=k
subject to f(zi,u) —xi41 =0, i=kk+1,..., K—1
T —x =0

Each function J; : X —+ R U oo summarises the cost-to-go to the end of the horizon

® Starting from the initial state T, under the optimal actions {uz"‘}f:_kl

There is a finite number Ny of possible initial states T, at each stage k we have

Ji (x,gl))

J (x,gNX))
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The principle of optimality states that for any k£ € {0,1,..., K — 1} the following holds

An example

An example

Je @) =min (L@, w) + Jsr (f @n,w))

U

— min (L (T, u) + Joi1 (@H))
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Discrete state- and action-spaces (cont.)

The backward recursion is known as the dynamic programming recursion

uy; (2x) = argmin L (2, ) + Jy i1 (f (23, u))

Once all the value-functions Ji are computed, the optimal feedback control

Tpt1 = f (zg, ur (), k=0,1,...,K—1

The computationally demanding step is the generation of the K value functions J
® Each recursion step requires to test N;; controls, for each of the Ny states

® Each recursion requires computing f (zy, v) and L (zy, u)

The overal complexity is thus K X (Nx X Ny)
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Discrete state- and action-spaces (cont.)

One of the main advantages of the dynamic programming approach to optimal control is
the possibility to be extended to continuous state- and action-spaces, by discretisation

® No assumptions on differentiability of the dynamics or convexity of the objective

However, it is important to notice that for a N, dimensional state-space discretised
along each dimension using M, intervals, the total number of grid points is Ny = MJJ;V v

® That is, complexity grows exponential with the dimension of the state-space
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Consider a total stage cost given by the sum of the state cost and control stage cost
Ly (mr, ug) = LY (z) + Ly (2r, ur)

The stage-cost for the states, the positions on a (4 x 3) board
® The target state is in position (2, 2)

® The state-cost per step is zero

X | X X 5 | 5 5

X | X X /. 5 | 0 5

x | x X 5 | 5 5

X X X 5 5 5
x LE (5 €X)

The stage-cost for the controls, the 9 possible ‘moves’

® The control-cost per stage is one, or zero

SN 1 1 1
— - =~ 1 0 1
YRR RN I 1 1
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The policy specifies the action that we will perform at time step k

® [t is a function of the state, at stage k

(k) = ug ()

A random example of policy,

m(zp) = 4 |

At k, the objective is to find the policy that minimises the cost-to-go

K
> L (i, up)
k

The value function of the policy at k is the goodness of each policy

Vr (zr) = L (2, wk) + Vo (241)
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At the final stage k = K, we have the following value function of the policy function

Vr (zx) = Li (2, ¥1) + Velars1)
= LK (ax) + M + Vi ke g1)

An example

An example Lk (U’K 7U’K>
An example 5 ’ 5 5
5 | 0 5
= 5| 5 5
5 5 5

As there is no time left to apply any control, we have the optimal policy

71'>I< (CEK) = |
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The value function for the optimal policy corresponds to the terminal cost F (zg)

Vi (CUK) — Vagr* ($K)

We have the optimal policy,

*

The value of the policy,

ot Ot O Ot
ot Ot Ot Ot

5!
5
5

The value of the optimal policy at stage K gives the total cost that would be incurred
if, starting at some state xx € X, the best sequence of actions would be performed

® The first optimal action of the sequence (!) was found to be ‘do nothing’
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According to the Bellman optimality principle, the optimal policy at stage K — 1

K-1 .
fn example (27 77) = argmin (Lg 1 (2K —1, ux 1) + Var (21))
P Remaining controls are optimal with respect to the state resulting from the first one
An example

~~ We must compute the stage-cost Lx_1(xx_1,ux_1) at stage K — 1

~» We know the value of the policy Vi x(zx)

Viex(zr) =

ot Ot Ot Ot
o Ot O Ot
Ot Ot Ot Ot
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(X X X X
L X X X X

x4 X X X X

For each state zx_1 € X, compute the stage cost Lx_1(zx_1,ux_1) forall ugx_1 € U

We can then add it to the optimal value function at stage K and optimise

Vw*(ibK_l) = min (LK—l(fl?K—l,uK—l) + Vw*(f’?K))

UK —1

From a minimisation of the value function, we compute the optimal policy
o (eB 1) = argmuin (LK_l(:zzk_l, up—1) + Vix (a:K))

1
— - =
R
"
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X X X O
X X X X
X X X X

Suppose that the system is at state X7 1 and consider control action 1

® As a result the system stays at state X7 1

We have the total stage cost, as sum of state-cost and action-cost

Li—1(X11,1) = LE (1) + LE 1 (X1, 1)
=541
=0

The application of action | leads to state X7 1

Vax(X1,1) =5

We proceed similarly, for actions |, N\, /~, v/, \, <, -, and — applied to state X711
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X X X O
X X X X
X X X X

For action | applied to state X7,1, we have the total stage-cost

Lg_1(X1.1,0) =I5 () + 7B~ (a1, ))
=5+1
=6

The application of action | leads to state X3 1

Vix(X2,1) =5
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X X X O
X X X X
X X X X

For action - applied to state X7 1, we have the total stage-cost

Lg—1(X1,1,) = JF 7N (X1) + 571 (X, )
=540
=5
The application of action | leads to state X7 1

Ve (X1,1) =5
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Summarising, for state X7 1
® At stage K — 1

Ly —1(X1,1,1) + Vox (X1,1) =645

=11

Lg_1(X1,1,N) + Ve=(X1,1) =6+5
=11

Lg_1(X1,1, /) + Ves(X11) =645
=11

Lg_1(X1,1,") + Vex(X11) =6+5
=11

Lk 1(X1,1,\)+ Vax(X1,1) =6+5
=11

L 1(X11,<)+ Vax(X1,1) =645
=11

Lg_1(X1,1, =)+ Vix (X1,1) =6+ 5
=11

Lg_1(X1,1,4) + Vex(X21) =6+5
=11

Lig_1(X11,)+ Vex(X1,1) =545
= 10
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The optimal action that we can do when at state X7 1 at stage K — 1 is to not move, -

T (X1,1) =

The value of the optimal action, at stage K — 1

0 | - -
VT['*(:UK—]_): ’

The value function V= (X71,1) gives the cost that would be incurred if, starting at state
X1,1 and from that stage on, we performed the best possible sequence of actions

® The first action would be the one given by the optimal policy 7*(X1,1 € X)
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Analogously for the other states zx_1 € X at stage K — 1, we have the optimal policy

N
. - YY) — . | . —
An example m (xK ! E ) \ ‘ T ,\
An example
An example The value of the optimal policy, at stage K — 1
10 | 6 6
10 0 6
10 10 10

The value function Vi x(zx_1) gives the cost that would be incurred if, starting at any
state zx_1 and from that stage on, we performed the best possible sequence of actions

® The first action would be the one given by the optimal policy 7*(zx_1 € X)
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The value of the optimal policy at stage K —1 gives the total cost that would be incurred
A el if, starting at state xx_1 € X, the best sequence of actions would be performed
10 | 6 6
b 10 | O 6
An example Vﬂ-* (xK_l) _ 10 | 6 6
10 10 10

The first optimal action of the sequence

ko €)= |

RN
- TN
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(X X X X
®y X X X X
L X X X X

For each state zx_o € X, compute the stage cost Lx_o(xx_2,ux_o) forall ug_o € U

We can then add it to the optimal value function at stage K and optimise

Vas(Tg_2) = ur?iHQ (Lg—2(xrx—2,ux—2) + Vax(zx_1))

From a minimisation of the value function, we compute the optimal policy

7 (zx_2) = arg man (L —o(zx—2,ux—2) + Vax (K —_1))

N TS

— - =

<+~
u




CHEM-ET7225
2022

An example

An example

An example

An example (cont.)

W*(LEK_Q c X) =

Vﬂ'* (xK—Q)

At stage K — 2, we have the optimal policy

The value of the optimal policy, at stage K — 2

15
15
15
12

— — -
-/ TN

oy O O
Sy Oy O

—
\V)
[
\V)
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At stage K — 3, we have the optimal policy

An example

An example 7"'* (xK—3 E X) =

An example \l/
/!
The value of the optimal policy, at stage K — 3

20 |

20
Var(zg—3) = 18 i

12

— = -
-/ TN

oy © O
Sy O O

—t
\V)
p—t
N\
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At stage K — 4, we have the optimal policy

An example

An example 7"'* (xK_4 E X) =

An example

+
I
/!
The value of the optimal policy, at stage K — 4

25 |
24
VTF* (xK—4) — 18 i

12

— = -
-/ TN

oy © O
Sy O O

—t
\V)
p—t
N\
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Stage K — 5

At stage K — 5, we have the optimal policy

W*(ZBK_E) c X) ]

The value of the optimal policy, at stage K — 4

VT('* ($K_4)

=7 (zx_q4 € X)

30
24
18
12

1
1
/

S OO

—_
[\

— = -

=/ TN

Sy Oy O

—_
DO
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The linear-quadratic regulator

An important class of optimal control problems is the linear-quadratic regulator, LQR
® The controller has to take the state of the system to the origin
® The system dynamics are deterministic and linear

® The objective function is quadratic

The problem is unconstrained and the horizon for control can be finite or infinite

® Their solution can be obtained with dynamic programming
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The linear-quadratic regulator (cont.)

Consider first the case in which we are interested in stabilising the system in K steps
We define an objective function to quantify the distance of the pairs (xj, u;) from zero

K-1

V (20, u0, 31, U1, ..., 2x—1, Uk —1, 2k ) = B (2 ) + » L, up)
k=0

® Terminal-stage cost
1
E (a:k) = §$KTQK$II€
® Stage-cost

1
L (xp, ugp) = 5 (asz Qxy + ugRuk)

The objective depends on the control sequence {’Ufk:}éio and the state sequence {zj }1*_,

® We assume that the initial state xg is fixed and known quantity

® Remaining states are determined by the model and {uk}kK;O

Matrices () and ()i are positive semi-definite, R is positive definite

® They are tuning parameters
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The linear-quadratic regulator | Baby LQR.

Consider a linear and time-invariant process with single state variable and single input

The system dynamics, in discrete-time

41 = axp + buy, with o, u, € R

The control problem, in discrete-time

1 1 5=
. e T T
minimise —I T +— (:l: T + U TU )
UQ, UL 5o UK — 1 2 KQK K 2 z:: « & q & & & .,
EF;K) Lz ,uy)
Consider a finite-horizon of length one (K = 1)
1—1
. 1 1
minimise —:1:1 QK T1 + — Z (xk qTE + Uy T"U,k)
uQ 2 k 4

We hayve,

minimise 5 (:ElT qr X1 + a:OTq:co + uOT Tuo)
uo
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The linear-quadratic regulator | Baby LQR (cont.)

minimise 5 (:Ile qr x1 + :Ionqxo + uOT ruo)
uQ
In this simple case, we only need to (optimise to) find a single control action, ug
® Under the constraint that ©1 = azg + bug

® The initial state zg is fixed and known

We have,
Y 1 T T T
minimise — xq gk 1 +Ty gx0 + Uy T U
(%) 2 ~— ~—
axg+bug axg—+bug

All the terms in the cost function are known, with the exception of ug

® |t is the decision variable, it is a scalar



S The linear-quadratic regulator | Baby LQR (cont.)

minimise — xq{ dk  *1  +Ty qro + ug rug
uQ 2 ~— ~—
axg+bug axo~+bug

Substituting and rearranging, we have a quadratic equation wug

An example

Linear-quadratic

regulators 1 5 5 5

An example minimise 5 (qﬂi‘o + TUO —|_ QK(CLQX) + bUO) )
UuQ

An example

£ (o)

® We are interested in value ug that minimises this function

After some algebra, we see that the cost function is a parabola

1 2 2
f(ug) = 5 (gz5 + ruy + qx (azo + buo))

1 2 2 2 2
= 5((q + a”qr)xy + 2(bagrxzo)uo + (b7 g + 7)ug)

We know how to locate the minimum of parabola, its vertex



S The linear-quadratic regulator | Baby LQR (cont.)

2022

1 2 9 9 9
fup) = 5 ((¢+ a”gx)zs +2(bagrzo)uo + (b°qr + r)us)

An example

f(up) is a parabola and it is smallest at the value ugp that makes its derivative zero

Linear-quadratic
regulators

An example

An example

d
—f(uo) = bgr azg + (b qx + mug
dug
=0

We have the solution to the optimisation/control problem

bgi a
Uy = — ————— 19
b2qx + 1
k

= —kxg



— The linear-quadratic regulator (cont.)

For systems with multiple state variables and multiple inputs, the structure is identical
The system dynamics, in discrete-time

An example :Bk_+_1 = A:Ek _|_ BUk, With Ll 6 RNZE and Up E RNU
Linear-quadratic
regulators

An example The control problem, in discrete-time

An example

1 1 &=
UQ U 5eees UK — 1 2 K QK K 2 z:: A k Qy, k k |

Consider a finite-horizon of length one (K = 1)

1 1
1
minimise —:1:1 Qrrt + — Z (a:kTka - ukT Ruk)
uo 2 k ;
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The linear-quadratic regulator (cont.)

After substituting the dynamics, we get

minimise  — z; L Qrx T + :UOT Jxo + ug Rug
Axo—+ Bug Axg—+ Bug

After some algebra and rearranging, we have

minimise % (xOT (Q + ATPA) 10 + 2ud BT Qi Azo + ugd (BTQKB + R) u())

uQ

Taking the derivative and setting it to zero, we get

df (uo)

— BT Qx Azo + (BTQKB n R) 0
dug

=0

Solving this linear system of equations for the unknown ug, we get

- -1 .
wo = — (Bf QfB—I—R) BT Qx A o

\

K

To be able to solve for longer control-horizons, we use backward dynamic programming
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The LQR | Sum of quadratic functions

Consider two quadratic functions

5 |

g 0
_5 |
—5 0
1
5 |

g 0
_5 |
—5 0

Vi(z)

1
§(az—a)TA(ac—a)

1

2

(1

Va(x)

1

1

2

(l

I
L2

Il
L2

-l

-

—1

1
1

D'

\

)

0.75

\ .

7

§(x—b)TB(:v—b)

-~

=0

1.5 0.5

0.5

1.5

Il

7

-~

=0

I1
T2

-

1
1

b2 23] (-

)

—1
0

)



T The LQR | Sum of quadratic functions (cont.)

2022
We compute function V(z) = Vi(z) 4+ Va(z) and show that it is a quadratic function

5

1
Viz) = 5((:1:—fU)TH(a:—v)—I—al)
An example
Linear-quadrasi H=A+F
v=H"1(Aa — Bb)
d=—(Ada+ Bb)T H ' (Aa+ Bb) + aT Aa + b7 Bb

L2
o
{
|

An example

An example

Matrix H is a positive definite matrix, because both A and B are positive definite

V(w):%((x—v)TH(as—v)—kd)

V(-1 o o] ([2] - [05]) +2

\ 7
“~~

=0
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An example
Linear-quadratic
regulators

An example

An example

The LQR | Sum of quadratic functions (cont.)

Consider two quadratic functions, one of which with a linear combination of variable z

Vi(z) = %(m— o)l Az — a)

1 T
Va(z) = §(Cx —b)" B(Cx —b)

We can compute function V(z) = Vi(z) 4+ Va,

V(a:):%((x—v)TH(a:—v)—kd)

H=A+cCTBC
v=H"'(Aa — CBb)
d=—(Aa+ CBb)T H™1 (Aa+ CBb) + aT Aa + bT Bb
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Multi-stage
optimisation

Discrete state
and action
spaces

An example

Linear-quadratic

The linear quadratic regulator (cont.)

An example

An example

Dynamic programming



— The linear-quadratic regulator (cont.)

We have the optimal control problem, with quadratic cost terms and linear dynamics

K—-1
min E(zx) + E L (x,u
ZTOsxLse+yTK —1+9TK ( K) ( ko k)
UQ, U1y UK 1 k=0
A cmple subject to Axp + Bup — xx4+1 = 0, k=0,1,..., K —1
Linear-quadratic _
regulators ro — o = 0
An example
An example The optimisation problem can be re-written in the equivalent form
min L(Zo,up) + L(z1,u1)+ - L(zgx_1,ux—1) + F (zx)
0 [\ ~ 7

L1y TK—1-2TK

Uy UL 5.y UK — 1 V(UO,.T]_,U]_,...,’U,K_]_|:BO)

After isolating the last two stages, we get

min L(Zo,uo0) + L(x1,u1) + -+ L(zx—2,ux—2)+
wla"'agK—Q
UQ, U1y UK —2

min L(zgx_1,ux_1)+ F (zx)
UK —15TK
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An example
Linear-quadratic
regulators

An example

An example

The linear-quadratic regulator (cont.)

min L(zo,uw)+ L(z1,u1)+ -+ L(zx_2,ux_2)+
T
51?1,---751?K—2
UQ, UL+ UK —2
min L(zg_1,ux_1)+ FE (zx)
UK —15TK

At the last stage, we have the optimisation problem

min L(zxg_1,ux—1)+ E (zx)
UK —1H2ZTK

subject to Azg_1+ Bug_1 —zx =0

The state zx_1 appears as parameter

We define optimal cost (the minimum) and optimal decision variables (the minimiser)
® The optimal decision variables v}, | (zx—1) and z} (vx—1)

® The optimal cost V* (xx_1)
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min L(:UK_l,uK_l)—I—E(xK)
UK —15TK

subject to Azg_1+ Bug_1 —zx =0

To solve this optimisation problem, we first substitute the dynamics

An example 1
T
Linear-quadratic E (xK) + L (xK—la uK—l) — = (AxK—l + B’LLK—l) QK (AxK—l + BUK—l)
regulators \2 .,
An example E(EK)
An example
1 T T R
+ 5 | Qri_1 + Uy _1UN -1

L(zg_1,ux_1)

1
=3 (x%—l Qe 1+ (ug 1 —v)" H(ug 1 —v)+ d)

We used,
H=R+BTQyB

v=— (BTQKB 4 R)_l BT Qp A zre_1

\

~

—1
d::cflzg_l (ATQKA—ATQKB (BTQKB—I—R) BTQKA> TK_—1
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The optimal control action uy ; = v is a linear function of the state zx _1

Krg_1
An example By using the dynamics, we compute the terminal state zz from the optimal action
Linear-quadratic « %
regulators T = A%K_l -+ BuK—l
An example
T -1 o7
An example — AxK—l + B (B QKB + R) B QKAxK—l

—1
— A+B(BTQKB+R) BTQuA | 251

\

~—
—Kg_1

The cost associated to the optimal control action is quadratic in xx_1

( . )

1
VE=_| gL Tr _ ur — v H | u; — W +d
K 9 K1 @Trk—1 + K—1 —~~ K—1 —~~
Uk 1 Uk 1

\ h ~; .
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( r )

T
= T 1Qrx—1+ | ug_1— v H|ug {— v +d

\ ) ~; .

Linear-quadratic
regulators

N |

1 —1
= o | k1 Qe + 1y (ATQKA—ATQKB(BTQKB+R) BTQKA) K1

[\ 7

~

d

1 —1
= 5%%—1 (Q +A"QxkA— AT QkB (BTQKB + R) BTQKA> Tk 1

(g 7




— The linear-quadratic regulator (cont.)

Kx_1=(BTQxB+R) B QxA

Summarising, we have

An example

Linear-quadratic ’u,;}_l (:EK_l) = KK—lxK—l
regulators

*
An example xK (xK_l) = (A + BKK_]_) xK_]_

An example

1
Vg (tg—1) = §$£_1HK—1$K—1

Function Vg defines the optimal cost-to-go from zx _1, under optimal control uy .

® As it depends only on zx _1 it allows to move to stage K — 2

min L(Zo,uo) + L(z1,u1)+ -+ L(zx—9,ux—2)+ V* (zx_1)
T
xl)"'vigK—Q
UQ, UL 5e e U — 2
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Linear-quadratic
regulators

An example

An example

The linear-quadratic regulator (cont.)

min L(Zo,uo) + L(z1,u1) + -+ L(zx—2,ux—2) + V" (zx—1

)

o ~

L1y TK —2
UQ , UL 5-- s UK D V(U’Oaxlaulr")uK—QIwO)

After isolating the last two stages, we get

min L(Zo,uo) + L(z1,u1) + -+ L(xx—3, ux—3) +
:El,...,:(E)K_g
UQ, UL -+ UK — 3

min L(zg_2,urg—2)+ V" (zx_1)
UK —2,TK—1

At the last stage, we have the optimisation problem

min V*(xx-1) + L(zg—2,ux—2)
UK —1,TK

subject to Azg_o+ Bug_o —zx_1 =0

The state zx_o appears as parameter



— The linear-quadratic regulator (cont.)

min V*(xx-1) + L(zg—2,ux—2)
UK —1,TK

subject to Azg_o+ Bug_o—zx_1 =0

An example We define optimal cost (the minimum) and optimal decision variables (the minimiser)
. _ . . o e . * *
f;gsft;tg;lsadratlc ® The optimal decision variables u}. , (zx—_2) and =} , (zx—_2)

An example

An example u;{_Q (xK_Q) — KK_QxK_Q
Tr_1(tx—2) = (A+ BKKg_2)TK_2

® The optimal cost V* (zx_2) from stage K — 2 to K

* T
Vi _1(zx—2) = ExK—QHK—237K—2

T -1 o7
KK_Qz—(B HK_lB+R) BT, . A

—

x

o
[

1
QO+ ATl 1 A— AT, 1B (BTHK_lB n R) BTl 1A
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An example
Linear-quadratic
regulators

An example

An example

The linear-quadratic regulator (cont.)

The recursion from IIx_1 to IIx_o is known as the backward Riccati iteration

In the general form, the recursion from Ilx = Qg

1
M, 1 =Q+ AT, A— AT, B (BTHkB 4 R) BTII, A
(k=K,K—1,---,1)

We can also define the general form of the optimal cost and optimal decision variables

~~ The optimal decision variables u; (z;) and ;" (z1)

up (xg) = — Ky,
:I?]: (:Bk) = (A + BKk) Tk

~» The optimal cost to go V* (zx) from stage k to K

1
Vi (zx) = EkaHk—l-lxk
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An example

An example

An example

Consider the linear and time-invariant dynamical system with measurement process

#(t) = Az() + Bu(t)
y(t) = Ca(t) + Du(t)

Consider the following system matrices and associate IO representation

A=-b y(s) = g(s)u(s)
B =—(a+b) c—a
C =k M®=ks+b
D =

For (a,b) = (0.2,1) > 0 and k = 1, system has inverse response (right-half-plane zero)



— The linear-quadratic regulator (cont.)

Step response, by solving the ODE with u(¢) = 1 and initial condition z(0) =0
® We observe what happens from the measurements y(t)

® The response to a unit step of the control u(t)

An example

1 T T T

0.8

An example 06
0.4

y 0.2
0} - _

-0.2

-0.4

An example

-5 0 5 10 15 20

time

Suppose that we request a unit step of the output y(t), as a set-point change
® We ask what is the optimal control action

® The best action capable to deliver it
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An example

An example

An example

The linear-quadratic regulator (cont.)

(s) = h——F

I3 = s+ b
N —
g(s)

u(s)

In the Laplace domain, we have the requested output

A 1
y(s) = —
s
By solving for u(s), we get
, Y
u(s) =
9(s)
s+
~ ks(s —a)
Back to the time-domain,
- . at
u(t) = - b+ (a+0b) e

a>0 (1)



— The linear-quadratic regulator (cont.)

Output response, with an exponentially growing input and y(t) is perfectly on target

350 . . ! .
300 |
250
An example 200 |
150 r
100 r

An example 50

An example 0

1.2 . . . .

1 L

0.8

y 0.6
0.4

0.2

0 1 1 1
-5 0 5 10 15 20

time

We are capable of achieving perfect tracking in y(¢) by using applying an optimal wu(t)



— The linear-quadratic regulator (cont.)

1 s+b

s—a ks

(s) = k=— with u(s) =
g(s) = s—l—b’Wl u(s) =

The zeros at s = a in g(s) and u(s) cancel out, tracking of output y(t) looks perfect

® The input-blocking property of the zero in the transfer function

An example

350 : : . .

r cxmmple 300
R 250 |
200 +

150 F

100 F

50 +

0

1.2 . . . .

1 L

0.8

y 0.6
0.4

0.2

0 I I I
-5 0 5 10 15 20

time
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An example

An example

The linear-quadratic regulator (cont.)

The inputs in reality cannot grow unboundedly, at some point they will hit constraints

20 T T I I

15 | .

time

The saturation of the input at the constraint destroys the perfect output response y(t)
[]
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An example

Linear-quadratic optimal control | LTV-QR

We can also consider the more general formulation of a linear-quadratic optimal control

. Kz‘l )7 [Qr ST [
T, U Uu S R u
m 0 k k;v k k/
Ly, (zy,ur)

k=0,1,....K —1

subject to 411 — Az, — Bruip =0,
T0 — 2o =0

At each recursion step, we must compute the (now varying) stage-cost Ly (z, uk),
T T
T, Qp S T,
L = k
o) = [ |2 ][]
Matrices () and Rj are time-varying and positive semi definite and positive definite
® Matrix Qi is positive definite

Moreover, we allow for further flexibility in tuning by including the mixing matrix Sy
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An example

An example

An example

Linear-quadratic optimal control | LTV-QR (cont.)

: T — ] Qs ST [
T W/+I§\[uk} [Skz sz} [UJ

Plere) Lk(%:ﬂk)

7

subject to xxy1 — Agxr, — Brug = 0,
0 — T =0

Furthermore, we allow the system dynamics to be time-varying,

fr (mp, u) = Agay + Bruy
Under these conditions, the optimal cost V;* (z;) from stage k to k+1 is still quadratic

Vi (z) = §$gﬂk+1fﬂk

The backward Riccati recursion is used to compute IIj1
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An example

An example

An example

Linear-quadratic optimal control | LTV-QR (cont.)

Using the terminal condition IIx = Qx, we have

My = Qp + Al Tl 1 A

(ST 4 AT B (B + BT Br) (Se + BT, 1 A
gt Ap g1 Bk r + By 141 By k+ By 1 Ag

The optimal decision variables are obtained from the feedback law,

uy (T1) = — (Rk + BkTHk—l—lBk)_l (Sk: + Bk;THk:—|—1Ak) T,

The forward simulation from 7o determines the state variables

T4+1 = Az + Bku]?;
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Consider the even more general formulation of an affine-quadratic optimal control

T T T
K—1
. 1 T y qgg 1 1 b qk SkT 1
min | i Oxl |zx + Z T, %k Gk S; | | %k
An example E(:L‘K> b g

Ly, (zy,ug)

subject to zxy1 — Agxy — Brug —cp, =0, k=0,1,..., K —1
An example

An example xo - EO — 0
These optimisations often result from trajectory linearisation of nonlinear dynamics

The general dynamic programming solution is retained by augmenting the state

~ _ 1
k — z,
The augmented dynamics,

= [t 0]s [0
Tk4+1 — Ck Ak) Tk Bk: Uk

The fixed initial value is Zg = [1 0
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We discussed the linear quadratic regulator over a finite horizon of some length K

Linear quadratic regulators can destabilise a stable system over finite horizons

® Setting @, R > 0 is not sufficient to guarantee closed-loop stability

An example SyStem
) up | Tpy1 = Az + Buy, Yk = Tk .
An example — ICU
An (:xa‘nlzlo < xk—i_l — Axk + B _ka yk k
ug, LQR
L y(t) = z(1)
up = — Kz, [«

The stability of the closed-loop is determined by the eigenvalues of matrix Acy,

The closed-loop dynamics,

Tk+1 = Axk — BKCBk
= (A — BK)

A\ 7

-~

Acr
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An example

An example

An example

Consider a discrete-time linear time-invariant dynamical system with LQR (K = 5)

(4/3 —2/3 1
Tp+1 = { O/:|517k‘|‘|:0:| U,

yr, = __21/ 3}

The discrete-time transfer function has a zero (z = 3/2), non-minimum phase system

4

. T E ' T T

min T T T T u u

ZQ L] 5924 ,T5 5 Q5 5—|— k Q k—i_ k R g
UQg, U1 ,-.-,U4 k=0

subject to Az + Bugy — 2x41 =0, k=0,1,...,4
xo— 20 =0

We use Q = Qs = CTC 4+ 0.0017 and R = 0.001 that barely penalises controls
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An example

An example

The linear-quadratic regulator | Infinite-horizon (cont.)

Based on the Riccati equation, we iterate four times from Ilx = Qg = @

KO kO kO g® g®)

Assuming that we use the first feedback gain KéS), we have

Uy, = K(§5)ar;k

k
o = (A+BES) w
The eigenvalues of (A + BKéE’))

(5)) _
A (ACL) — (1.307,0.001)
>1
As one of the eigenvalues is outside the unit circle
® The closed-loop system is unstable
® The state grows exponentially

® 1. 00 as k — o0



— The linear-quadratic regulator | Infinite-horizon (cont.)

The closed-loop eigenvalues of (A + BKOK ) for control horizons of different lengths, o

® For reference, the open-loop eigenvalues of A, X, are both stable

]. T I
0.8

An example 0 6

0.4
0.2
Im 0

An example

An example

-0.2
-0.4
-0.6
-0.8

1.5

When we start with a finite horizon LQR, we move both the open-loop eigenvalues
® From K = 1, until we enter the unit disc at K =7

® The stability margin grows with K
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An example

An example

The linear-quadratic regulator | Infinite-horizon (cont.)

max eig(A + BKn(0))

0.6

Stability margin as function of
the control horizon

® Finite-horizon may return
unstable controllers

® More robustness is gained
as the horizon grows

| A (Ag‘}‘j)) — (0.664, 0.001)

10 11 12 13 14 15

A feedback gain Kéoo) corresponds to an infinite horizon linear quadratic regulator

min
LO LY 5e-s
UQY UL 5- - -

©.@)

Z ka Qi + ukT Ruy,
k=0

subject to Az + Bup —2x4+1 =0, k=0,1,...

o — 20 =20
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An example

An example

An example

The linear-quadratic regulator | Infinite-horizon (cont.)

o0
: T T
min
LIz Quy + uyl Ruy
U, UL .- k=0

subject to Azy + Bugy —xx41 =0, k=0,1,...

o — 20 =20

If we are interested in controlling a continuous process, without a final time, then the
natural formulation of the optimal control problem is with an infinite horizon cost

® In this case, the Riccati recursion has a stationary solution Il = Il;1,
-1
M=qQ+ ATTIA — ATTIB (BTHB n R) BTTIA
Given II, we have the classic optimal control feedback

—1
u* = — (R—l— BTHB) BTIIA z,

\

~

K

Closed-loop stability is not relevant for batch processes, finite-horizon LQRs are fine



— The linear-quadratic regulator | Infinite-horizon (cont.)

o0
: T T
min
omin > ! Qo+ w! Ruy
uUg, U1 ,--- k=0

subject to Azp + Bugy — 241 =0, k=0,1,...

An example

o — 20 =20

An example

An example

Infinite-horizon solutions exist as long as the cost function is bounded
® In this case, the cost function is an infinite sum

® The result must not be infinitely big

This is possible when the linear-time invariant systems is controllable
~» We can transfer its state from anywhere to anywhere
~+ And, there exists a control sequence to do that

~» And, it can be done in finite time



— The linear-quadratic regulator | Infinite-horizon (cont.)

If the pair (A, B) is controllable, the there exists a finite horizon of length K and a
sequence of inputs that can transfer the state of the system from any z to any z’

That is, by forward simulation

An example — —_

UK,
UK —1
An example x/ - AK(E _|_ |:B AB tt e AK_lB]
An example
| Uo U
Similarly,
— UKl -
UK —1
(B AB ... AK-IB]| | | =2’ - Afaz+
c
| U0

Controllability matrix C must be full rank for the equation to have a solution {uk}fz_ol

® If cannot reach z’ in K moves, then we cannot reach it in any number of moves



