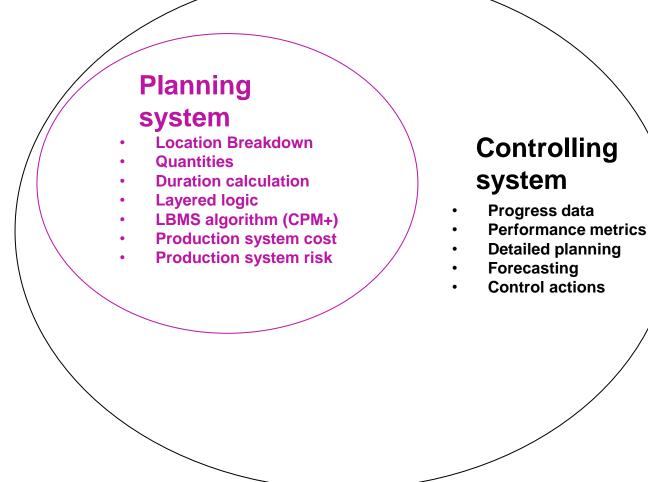


Operation Management in Construction Lecture #3 Location-based production control

Olli Seppänen Associate professor

Topics, today's lecture #3

- Learning objectives of Lecture #3
- Location-based controlling overview
- Cascading delays in construction
- Controlling case studies



Intended learning objectives for this lecture

- ILO 2: **Students can compare and contrast** the similarities and differences of different production planning and control methods
 - ILO emphasized for controlling
- ILO 5: Students can explain the significance of work and labor flow and how flow can be achieved in construction
 - ILO reinforced
- ILO 8: **Students can** make production control decisions based on the schedule using the Location Based Management System
 - ILO emphasized

LBMS technical system

Key differences between controlling systems

Factor	"Traditional" / CPM	LBMS	Takt controlling		
Emphasis	Detect delays and replan to mitigate delays on critical path	Predict delays and try to prevent cascading delays	Solve problems during the takt		
Calculations	CPM algorithm / comparison of dates	Production rates, productivity and forecasts	Not specified, more of a social process		
Typical control actions	Additional resources on critical path	Increase / decrease production rates to prevent cascading delays	Buffer wagons or even stopping of production until problem solved		

Progress data for controlling systems

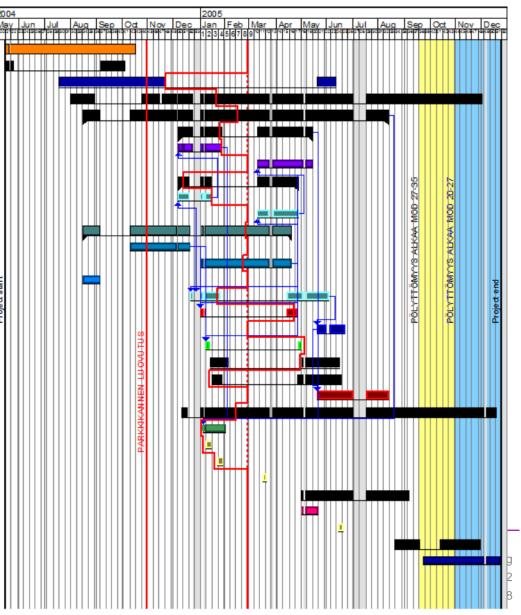
Type of data	CPM / Gantt	Takt	LBMS
Start and finish dates	Current status most important (exact dates do not matter)	Did we hit the takt or not? (exact times do not matter)	Accurate start and finish dates needed for calculations
Actual resources	No impact on calculations	No impact on calculations	Needed for forecast calculations
Actual workhours	No impact on calculations	No impact on calculations	Needed for forecast calculations
Suspensions	No impact on calculations	No impact on calculations	Needed for forecast calculations
Timeliness	Often monthly	For each takt	Daily/weekly

Progress data

Manual data collection

- Distributed
- Centralized

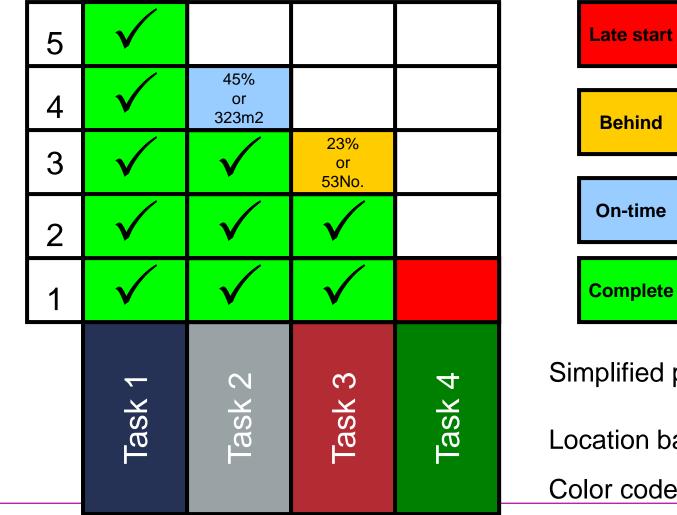
Digital data collection


- Distributed
- Centralized

• Automation in the (near) future?

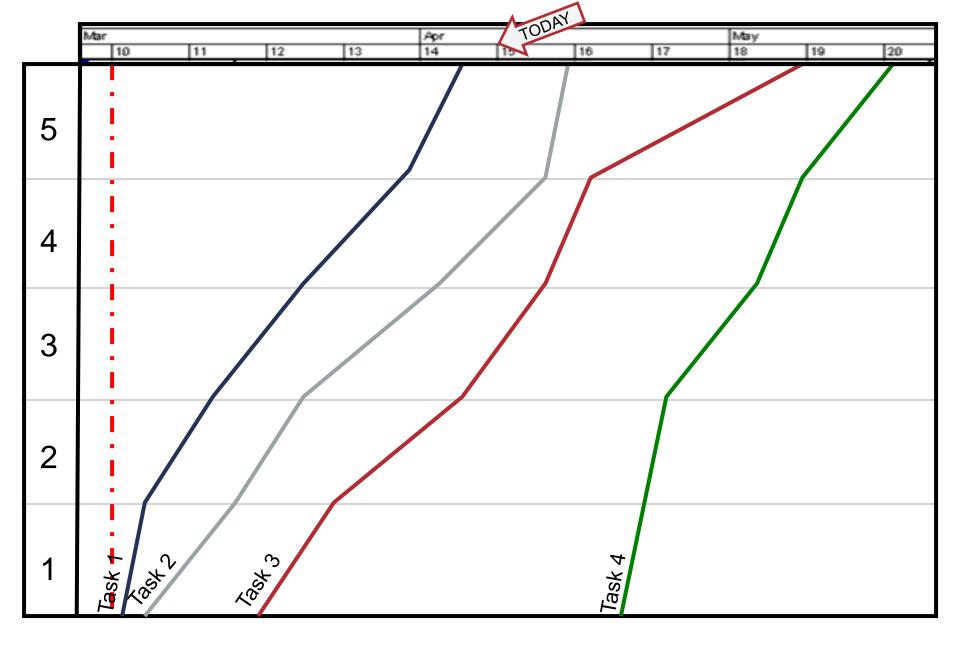
Traditional visualization of progress

Hierarchy	Code	Name	2 M
+1		Maanrakennus	
+2		PARKIN KAN SIRAKENTEET	
+3		PERUSTUK SET JA PAIKA LLAVALURAKENTEET	
-4		TALOTEKNISET TYÖT	
-5		RUNKO JA VA IPPA	
-5.1		Pintabetonilattiat	
+5.1.1	5610	PINTABETONILATTIAT1	
+5.1.2	5610	PINTABETONILATTIA T2	
-5.2		Puuikkunat	
+5.2.1	4110	PUUIKKUNAT1	
+5.2.2	4110	P UUIKK UNAT2	
-5.3		Betonielementtirunko + julkisivu	
+5.3.1	3050	BET.ELEMENTTIRUNKO + JULKIS NUMOD 30-27	
+5.3.2	3050	BET.ELEMENTTIRUNKO + JULKIS NUMOD 27-20	
+5.3.3	3050	BETONIELEMENTTIRUNKO PARKKI	ŧ
+5.4	5120	VESIKATE	100
+5.5	3760	VESIKATONPUUTYöT	Project start
+5.6	5014	PELTITYöT	1
+5.7	3030	TERÄSRAKENTEET	
+5.8		Paroc-elementit	
+5.9		Metalli-ikkunat ja lasiseinät	
+5.10		JULKISIVUN VERHOUKSET JA SäLEIKöT	
+6		SISĂ VA LMISTUS	
+7	4520	KUILUMUURAUKSET1	
+8	700	*LJH / SPRINKLERKESKUSA SENNUSVA LMIS	
+9	700	Sähköpääkeskus ja muuntamoa sennusvalmis	
+10		SäHKÖNOU SUKOMEROT A SENNU SVALMIITMOD 27-28	
+11		PIHA N RA KENTEET	
+12		PARKKIHA LLINMA A LAU S	
+13		SäHKöNOU SUKOMEROT A SENNU SVALMIITMOD 20-27	
+14		Vuokralaismuutokset	
+15	7600	TARKA STUKSET, SÄÄ DÖT JA MITTAUKSET	

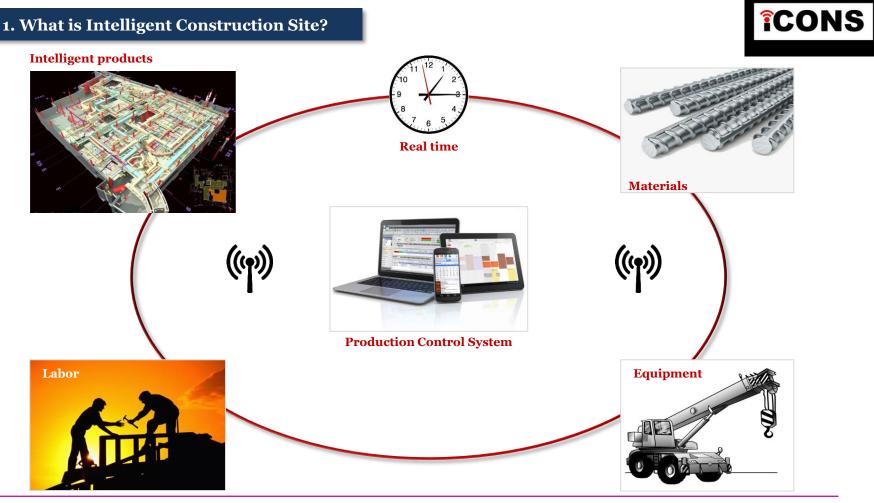


Takt visualization of progress

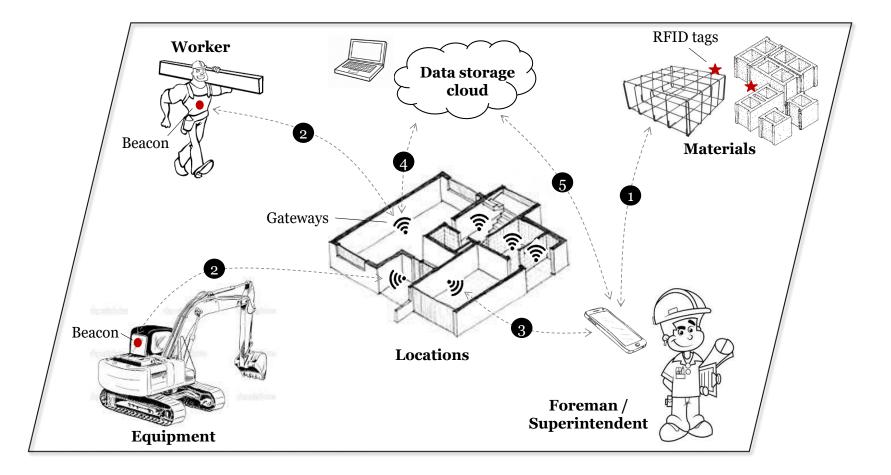
LBMS: Visualization of progress



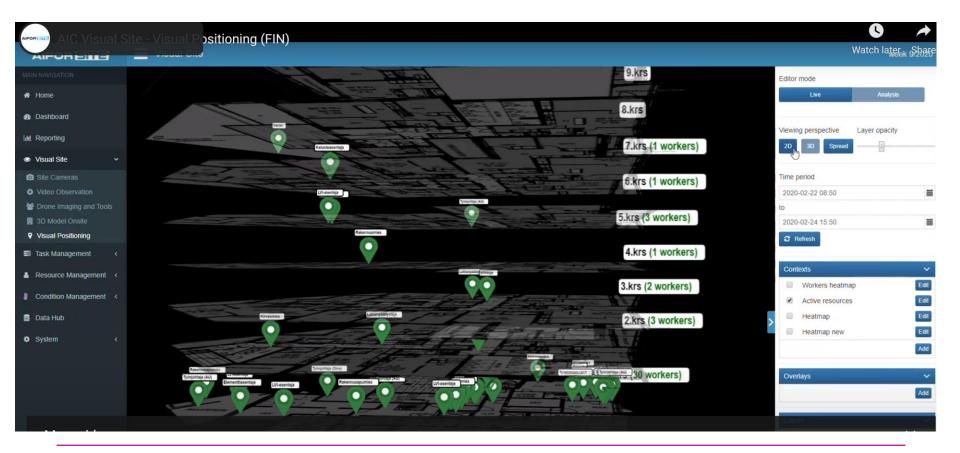
Simplified project control

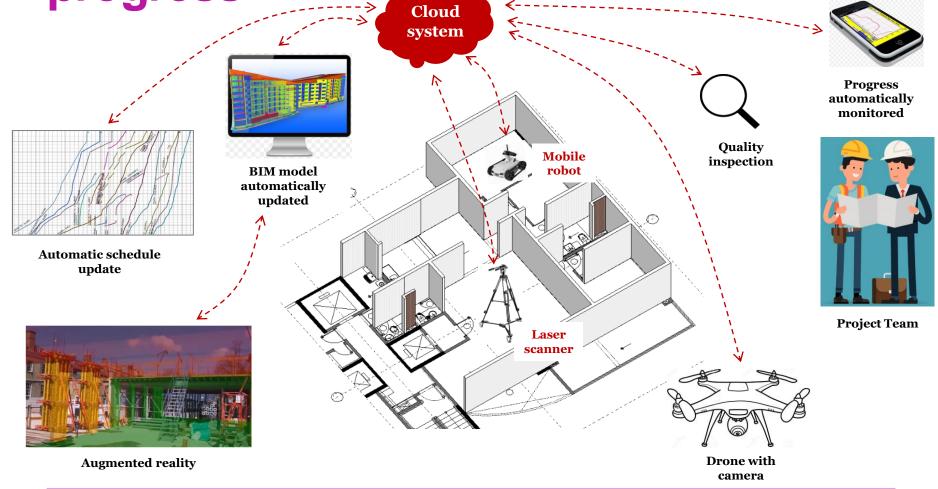

Location based updates

Color coded for clarity

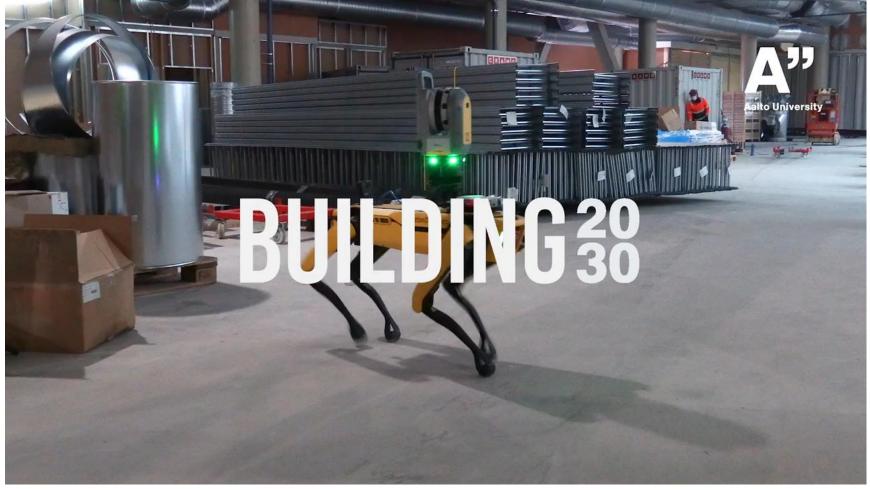

	Report date	Actual	Forecast
--	-------------	--------	----------

Resource positioning for automated data



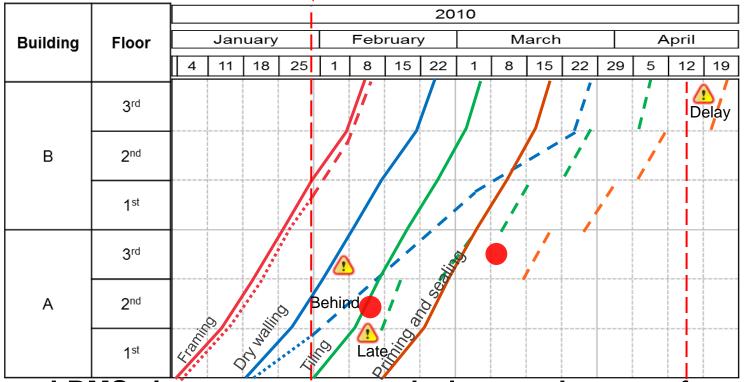


Commercial solutions for positioning becoming available



Reality Capture for automated progress

Spot robot for automatic data collection



LBMS Key Performance Indicators

KPI	Calculation	Use
Actual production rate	Actual quantity / actual duration (not including suspensions)	How fast production is moving? General Contractor's main interest
Actual labor consumption	Actual manhours / actual quantity	How productive is work. Trade contractor's main interest. Informs control action decisions. Hard to get data

Alarms

- LBMS alarms are generated when predecessor forecast impacts successor forecast
 - Delaying start
 - Causing a discontinuity

Control actions – LBMS vs. takt

	LBMS	Takt		
Trigger	Calculated alarms	Missed takts / going to miss a takt		
Calculations	 How to restore forecast: Productivity improvement Additional resources (of same productivity) Longer days / cancelled holidays 	Social process		
Typical control actions	Increase / decrease crew size, delay start times, longer / shorter days	Root cause analysis, use of buffer wagons, stopping of train		

Department of Civil Engineering 1/13/2022

19

Control actions are responses to alarms

Takt Control actions

#	Name	ų L	o	Ca	Description	Effect	
1	Decoup l ing of Takt areas	×	x	A	Reorganising the sequence for completing Takt areas	Change in the order areas are completed	
2	Empty waggon	x	x	А	Planning of buffer times (slack); for example drying-out periods	Visualisation of required buffer; lengthening of the construction time	
3	3 Phase X			А	Different process phases require different sizes for Takt areas. Adjustment for these differences results in efficiencies.	Optimisation of the construction process	
4	Soft start	x		А	Delaying following trains, if more than one train is used. This allows learning from the starting train.	Lengthening of the construction time, stabilisation of site processes	
5	Train stoppage		х	А	Stopping the construction process due to a problem	Longer duration of construction	
6	Combining handover times	х	х	в	Arranging the handover by combining Takt areas to lager areas.	Bundling of Takt areas for handover	
7	Coupling into and onto	х	х	в	Adding or Removing waggons to change the process sequence.	Lengthening of the construction time	
8	Jumpers	х	х	в	Using flexible labor to deal with peaks in required work	Harmonisation of the work	
9	Sp l it of train order	x	x	в	Splitting the construction sequence, because conditions demand for extended process durations.	Lengthening of the construction time	
10	Takt time reduction	x	x	в	Reducing the Takt time	Harmonisation of the process sequence; shortening of the throughput time	
11	Takt time increase	x	x	в	Extending the Takt time	Harmonisation of the process sequence; lengthening of the throughput time	
12	Train sp l it	x	x	в	Paralleling multiple trains with similar sequences to pass the construction site.	Shortening of the construction time	

Binninger et al. 2017: Adjustment mechanisms for demand-oriented optimization of takt planning and takt control

 Takt has a lot of options for controlling too!

End of video 1

Department of Civil Engineering 1/13/2022

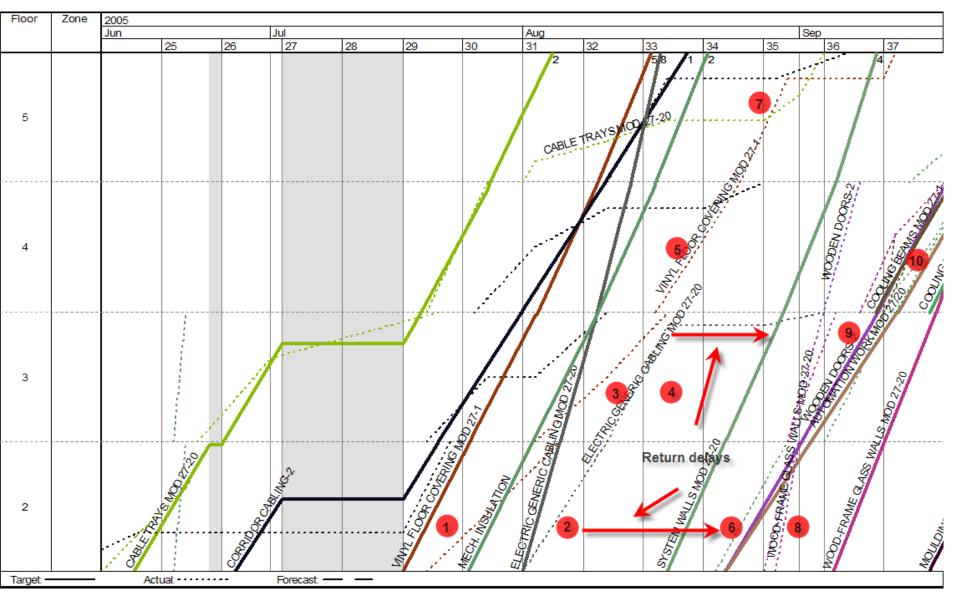
21

Control actions prevent cascading delays (Seppänen 2009)

Project type	M2	Start-up delays	Discontinuities	Slowdowns	Total effect of cascading delays / total duration (months)
Retail	6,800	34	36	54	1.5 / 8.5
Retail	10,638	8	20	94	1 / 12
Office	14,528	96	129	132	1.5 / 15

- Cascading delays cause 10+ % increase of project duration
- Productivity loss of 30+ %

•Only 12% of problems discussed in site meetings!

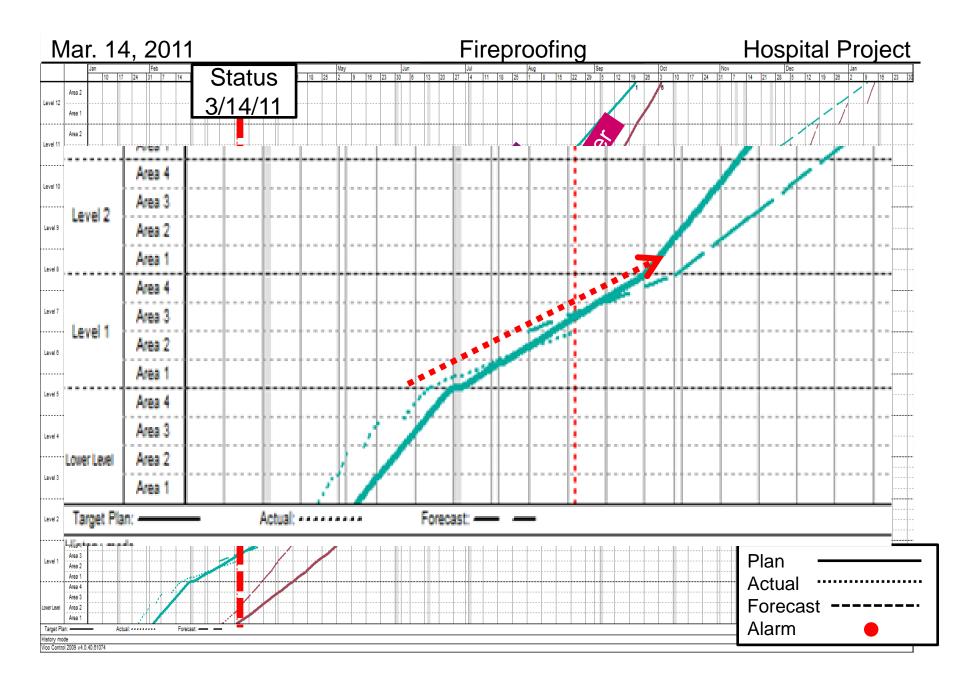


Cascading delays

- Problems especially in projects without buffers
- All investigated building projects had cascading delays in interior construction phase (MEP + rough-in + finishes)
- Delays caused by multiple subcontractors in the same space
 - Slowdowns (large, open locations)
 - Discontinuities (constrained spaces)
 - Start-up delays
- Cascading delays made projects unpredictable and chaotic

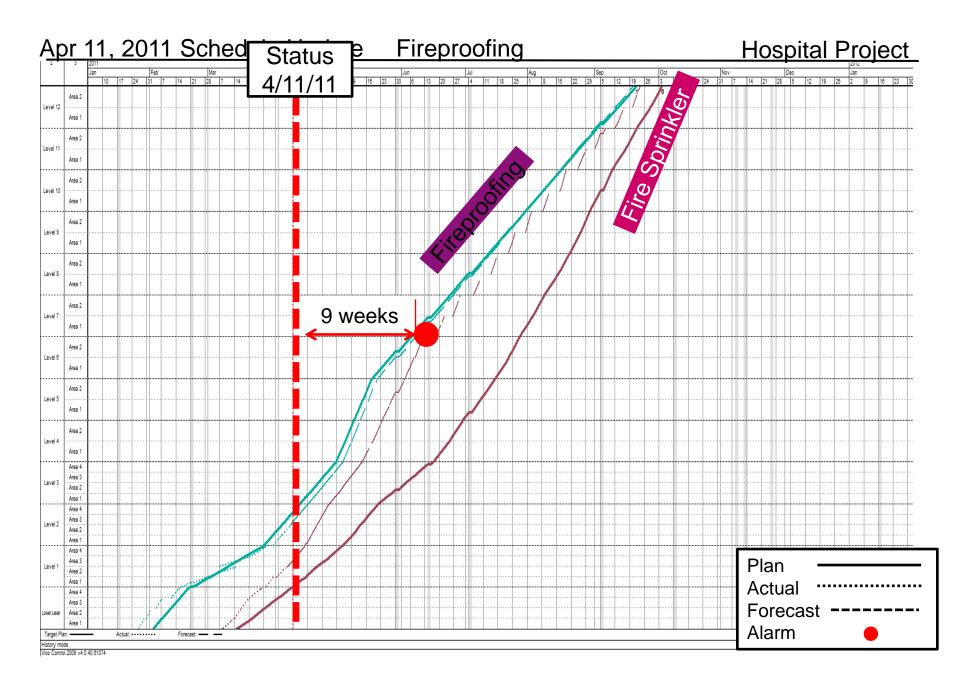
Example of cascading delays (Seppänen 2009)

Empirical results about LBMS controlling


Study	Key result
30 Master's theses 1980's, 1990s + empirical research on 6 projects (Seppänen & Kankainen 2004)	Just planning continuity is not enough, controlling is critical. Discontinuities are the hardest deviation type to recover from. Starting too early leads to slowdowns
Seppänen (2009)	Improved forecasting, identified cascading delay chains
Kala et al. (2012)	LBMS provides better information for superintendents than CPM Subcontractors overestimate their resource consumptions by 30-40%
Evinger et al. (2013)	CPM floors had 18% higher labor consumption and 10% slower production than LBMS floors
Seppänen et al. (2014)	39% of alarms resulted in control actions 65% of control actions increased production rate, 50% successfully prevented production problems It is possible for GC to control production rates of subs!

Key assumptions of LBMS controlling

- 1. Reacting to alarms takes time
- 2. Resources leave when they have no work concept of return delay
- 3. Separating the crews with time buffers is mandatory
- 4. Proactive control prevent collisions



	Target/	Estima	ited	Actual			Delta		
Name	Production			Production					
	rate	units	%	rate	units /	%	Production	%	
	units/day	/ day	Comp	units/day	day	Comp	rate units/day	Comp	
Beam Clips	10,356	SF	15%	13,563	SF	25%	3,207	10%	
Fire Proofing	2,000	SF	6%	1,364	SF	15%	-636	9%	
Fire Sprinkler	436	LF	0%	541	LF	4%	105	4%	

	N	lo.	Date	Prod Opportur	uction nity/Alar	'm	og	F	G	•
1 48	PA	I-076	14-Mar-11	Recomme	ndation	Stat	tus	ebfore moving to new	Owner Nels, Mike W	
51	PAI-137 PAI-136 PAI-135 PAI-134 PAI-133	20-Mar-12 20-Mar-12 20-Mar-12 14-Mar-12	production drywall from LVL 1 to Ductwork insulation task is trendi Milestone. In wall plumbing on the even and	Deploy 3rd gun to do focus gun 2 on produ	Respons	se		Ov	vner	
	PAI-132 PAI-131 PAI-131	14-Mar-12	This is influencing the start of Insula the 80% OH Milestone and Product Forecast suggests a late March star	ch tasks are trending too slowly in level 2 podium. clos ation and headwall tasks -> in turn this may affect sug cion drywall continuity. Pipi t for lower level HVAC below duct. A forecasted	Focus 3rd gun on and 2nd gun on p	•		t Firepr	ral Super, oofing Area Super	

	Target	/Estim	ated	A	ctual	Delta		
Name	Production rate units/day	units / day	% Comp	Production rate units/day	units / day	% Comp	Production rate units/day	% Comp
Fire Proofing	2,000	SF	30%	2,031	SF	29%	31	-1%
Fire Sprinkler	436	LF	14%	560	LF	19%	124	5%

	N	lo.	Date	Prod Opportu	uction nity/Alar	'n	.og	F		G	4
1 48	PAI	1-084	11-Apr-11	Recomme	ndation	Sta	tus	ebfore mov	ing to new	Owner	
50 51 52 53	PAI-137 PAI-136 PAI-135 PAI-134 PAI-133	20-Mar-12 20-Mar-12 20-Mar-12 14-Mar-12	In-wall copper is driving the produ- the podium of level 3 is trending v production drywall from LVL 1 to Ductwork insulation task is trendi Milestone. In wall plumbing on the even and	Reduce fire proectior by 1 journeyman	Respons	se		4	Ow	/ner	
55	PAI-132 PAI-131	14-Mar-12 06-Mar-12	This is influencing the start of Insul the 80% OH Milestone and Product Forecast suggests a late March star	the formation of the provided and the provided at the provided	Production rate in line with target by reducing by 1 resource			t by	Fire Pr	al Super, otection rea Super	· · · · · · · · · · · · · · · · · · ·

First look at takt (Seppänen 2014)

- With LBMS assumptions, takt cannot work!
 - Capacity buffers lead to waiting and waiting leads to demobilization and return delays → trainwreck!
 - Paying workers for doing nothing would be very expensive
- Lack of takt empirical evidence did not help
- However, some companies in California and Germany were really successful in it, so we started looking deeper

Key assumptions of LBMS did not hold

- Time buffers were used also when everything was going well
- Lack of urgency led to being delayed all the time
- Lack of trade communication
- Resource flow optimized without considering process flow
- Documented takt cases did not include trade wrecks, there was no waiting

Why takt production has gained momentum so fast?

- In pilot projects, by only implementing better planning process, ~30% duration reduction has been achieved
- When control processes and supporting activities are included, duration reduction of ~50% is normal
- Takt is not only about time reduction! Other benefits include

Improvement	t of work flow	Decrease of waste			
Increase of productivity	Decrease of Work- in-Progress (WIP)	Cost savings of projects	Decrease of quality errors		
Crews know when and where to work	Prevention of overproduction	Stabilizing work processes	Less inventory / waiting times between work steps		
Opportunity to discuss with other crews about problems	Optimization of logistics through continuous flow	Shorter cycle time			

Takt Maturity Levels

Level i)	Level i) TECHNICAL TAKT PLANNING (project-level) -> first takt implementation cases, 30% duration reduction					
R1	The production plan fits the client's requirements					
R2	Takt areas, takt time and wagons with resourcing are unambiguously determined					
R3 Effective visual management is ensured						
Level ii)	SOCIAL INTEGRATION & TAKT CONTROL (project and organizational level) -> flow in projects, -50% dur.					
R4	Training and involvement of the project participants is ensured					
R5	The logistics are integrated and takted with the production plan					
R6	The design process is integrated and takted with the production plan					
R7	The common situational awareness during production is ensured					
R8	Barriers are tackled through continuous and collaborative improvement					
R9	Quality control is systematic and takted					
Level iii)	CONTINUOUS IMPROVEMENT (organizational and regional level) -> flow in portfolios, productivity leap					
R10	Formulation and development of teams					
R11	Contractual integration					
R12	Systematic waste elimination over projects					
R13	Industrialized logistics and material flow					
R14	Standardized, takt-based work quantity libraries					
R15	Improving through KPI's and data-driven decision making					

Lehtovaara et al. 2020

Level i) example – Case Keinulauta

Fira residential project

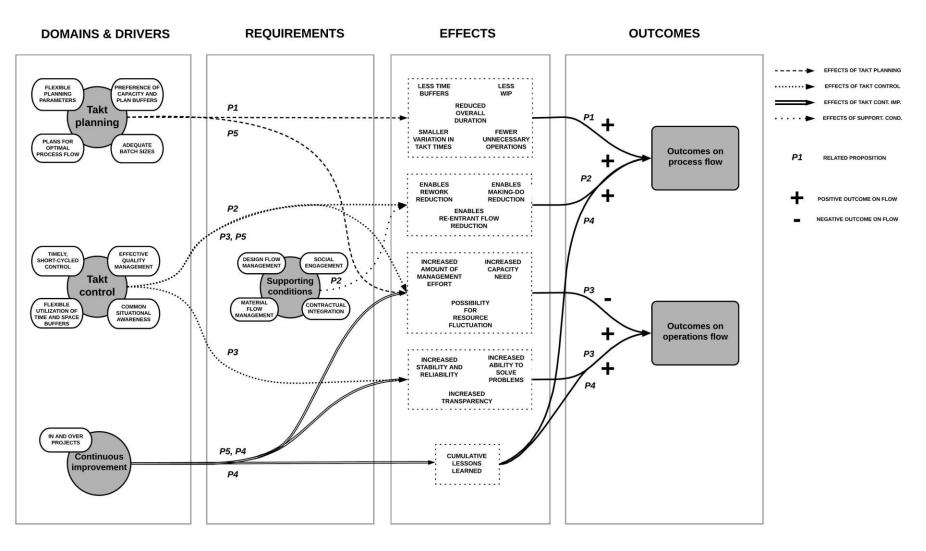
- 79 rental apartments
- Floor plans vary from 28 to 41 m2
- Intensive takt planning phase
 - 1-day takt, 60 takt wagons
- Challenges in control phase
 - Missing daily management, communication issues
- However, significant benefits
 - ~15% duration reduction
 - Increased quality
 - Increased profit (+40%)

Level ii) example – Case KYT

- Skanska commercial project
 - 40'000 m2 multi-store office building
 - Floor plans vary from 28 to 41 m2
- Collaborative takt planning and control
 - Over 20 collaborative planning workshops
 - Daily huddles and weekly plan updates with 5d takt
- Benefits included
 - Tight schedule delivered in time
 - Production stability

Level iii) example – Case Folks Hotel

- NCC hotel renovation project
 - 75 hotel rooms with high repetition
- Intensive takt planning and control
 - 50% duration reduction
- However, continuous observation revealed high amount of waste
 - The plan was achieved with 37% room utilization rate
 - ~80 entries to a room per day by various people
- Even though waste was not removed within the project, several ways for continuous improvement were established


Table 3. The number of visits and the number of workers entered to the two observed
hotel rooms.

Room 1						Room 2			
Day	Visits	Avg. visit time	St.dev of visits	Amount of different workers	Visits	Avg. visit time	St.dev of visits	Amount of different workers	
1	103	0:03:27	0:06:41	13	133	0:02:10	0:04:19	14	
2	82	0:01:58	0:06:03	12	72	0:03:22	0:09:41	17	
3	76	0:01:28	0:04:44	18	89	0:01:06	0:02:29	24	
4	78	0:01:05	0:02:06	13	63	0:01:38	0:04:45	18	
5	50	0:02:38	0:08:45	7	65	0:02:17	0:08:41	14	
6	81	0:04:43	0:11:28	14	62	0:02:02	0:03:58	10	
7	76	0:02:54	0:06:12	15	67	0:04:47	0:10:58	14	
8	105	0:01:38	0:04:34	18	102	0:02:14	0:06:38	10	
9	89	0:01:25	0:02:47	21	105	0:03:32	0:10:25	12	
10	36	0:02:19	0:04:26	14	56	0:02:04	0:05:46	9	

Lehtovaara et al. (2020)

Impacts of takt – a theoretical model

Aalto University School of Engineering

Lehtovaara et al. (2021). How takt production contributes to construction production flow: A theoretical model. *Construction Management and Economics.*

Thank you Questions & Comments

